نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی آبیاری و زهکشی دانشگاه زابل.

2 استادیار گروه مهندسی آب دانشگاه زابل.

چکیده

استفاده از مدل­های شبیه­سازی یکی از راه­کارهای پیش­بینی اثرات آب‌های شور بر عملکرد محصول و شوری خاک می­باشد. در این تحقیق شوری خاک و عملکرد ذرت علوفه­ای در شرایط آبیاری با آب شور با استفاده از دو مدل SWAp و SALTMED ارزیابی شدند. بدین منظور آزمایش­های مزرعه‌ای در تیمارهای مختلف استفاده ثابت و تناوبی آب شور و غیر شور (با اعمال آب غیر شور در تناوب یک در میان، سه در میان و پنج در میان آب شور) در دو سطح شوری 5/3 و 7/5 دسی­زیمنس بر متر در منطقه­ی کرج انجام شد. هدایت الکتریکی آب غیر شور 4/0 دسی­زیمنس بر متر بود. عملکرد محصول و شوری خاک اندازه‌گیری و توسط دو مدل مذکور شبیه­سازی شد. مقدار ضریب تبیین (R2) برای شوری خاک و عملکرد محصول در مدل SWAp به ترتیب 754/0 و 587/0 و برای مدل SALTMED به ترتیب برابر 758/0 و 846/0 به دست آمد. قدر مطلق خطای نسبی (|RE|)مدل  SWAp در تخمین عملکرد محصول از 7/1 تا 3/26 درصد و در تخمین شوری خاک از 5/2 تا 4/32 درصد متغیر بود. هم­چنین |RE| مدل SALTMED در تخمین عملکرد محصول از 9/0 تا 7/24 درصد و در تخمین شوری خاک از 2/2 تا 2/38 درصد متغیر بود.

کلیدواژه‌ها

عنوان مقاله [English]

Simulation of Soil Salinity and Maize Yield under Saline Water Application Using SWAP and SALTMED Models

نویسندگان [English]

  • m gh 1
  • m t 2
  • m h 1

چکیده [English]

Using simulation models is a strategy in agricultural water use management and in predicting effect of saline water on crop yield and soil salinity. In this study, soil salinity and forage maize yield were evaluated under alternating application of saline water with fresh water using SWAP and SALTMED models. For this purpose, field experiments were carried out under different treatments of fixed and cyclic use of saline (salinity levels of 3.5 and 5.7 dS.m-1) and non-saline water (non-saline water application in every one, three, and five saline water application) in Karaj region. Electrical conductivity of the non-saline water was 0.4 dS.m-1. Crop yield and soil salinity were simulated via both models and compared with their corresponding measured values. In SWAP model, coefficient of determination (R2) values were 0.754 and 0.587 for soil salinity and crop yield, respectively, while these values were 0.758 and 0.846, respectively, for SALTMED model. Absolute Relative error (|RE|) of SWAP model varied between 1.7% and 26.3% in crop yield estimation and varied between 2.5% and 32.4% in soil salinity estimation. Also, |RE| of SALTMED model ranged from 0.9% to 24.7% in estimation of crop yield, and ranged from 2.2% to 38.2% in case of soil salinity estimation.

 

کلیدواژه‌ها [English]

  • Cyclic use of saline and non-saline water
  • Drip irrigation
  • Forage maize
  1. پیغمبری، س. ا. 1388 . طرح­های آزمایشی در مطالعات کشاورزی. انتشارات دانشگاه تهران.
  2. خانی قریه­گپی، م.، داوری، ک.، علیزاده، ا.، هاشمی­نیا، س.م. و ذوالقفاران، ا. 1386. ارزیابی مدل SWAP در برآورد عملکرد چغندرقند تحت کمیت­ها وکیفیت­های مختلف آبیاری. مجله آبیاری وزهکشی ایران، 1(2): 117-107.
  3. شیرشاهی، ف.، بابازاده، ح.، کاوه، ف. و امیری، ا. 1393. ارزیابی کارآیی مصرف آب و برآورد عملکرد گندم با استفاده از مدل SWAP در بخشی از شبکه آبیاری و زهکشی درودزن، نشریه پژوهش آب در کشاورزی، 28(2): 273-283.
  4. کریمی گوغری، ش. و اسدی، ر. 1391. ارزیابی مدل SWAP در برآورد عملکرد ذرت دانه­ای در شرایط کم­آبیاری. مجله پژوهش آب در کشاورزی، 26(4): 404-391.
  5. محمدی، ا.، حسن­لی، م.، قره­داغی، م.م. و محمدی، م. 1393. ارزیابی رطوبت و شوری خاک با استفاده از مدل SALTMED در شرایط اقلیمی سیستان. دومین کنفرانس ملی مدیریت آب و خاک کشاورزی، 30 و 31 اردیبهشت، دانشگاه تهران، پردیس کشاورزی و منابع طبیعی.
  6. نحوی­نیا، م.ج.، شهیدی، ع.، پارسی­نژاد، م.، و کریمی، ب. 1389. ارزیابی مدل SWAP در تخمین محصول گندم در شرایط کم­آبیاری و شوری در منطقه بیرجند. مجله پژوهش آب ایران، 4(6): 43-58.
  7. نوری، ح.، لیاقت، ع.م.، پارسی­نژاد، م.، وظیفه­دوست، م. 1389. برآورد عملکرد گندم و ذرت علوفه­ای در شرایط محدودیت توام آبیاری و شوری با استفاده از مدل آگروهیدرولوژیکی SWAP. نشریه آب و خاک، 24(6): 1235-1224.
  8. Akbari Fazli, R., Gholami, A., Andarzian, B., Ghoosheh, M. and Darvishpasand, Z. 2013. Investigating the effect of applying drainaged water on wheat yield using SALTMED model. Journal of Novel Applied Sciences, 2(S3): 1003-1011.
  9. Allen, R.G., L.S. Pereira, D. Raes, and M. Smith. 1998. "Crop evapotranspiration. Guidelines for computing crop water requirements", Irrig. And Drainage paper no. 56. FAO, Rome.
  10. Aly, A.A., Al-Omran, A.M. and Khasha, A.A. 2015. Water management for cucumber: Greenhouse experiment in Saudi Arabia and modeling study using SALTMED model. Journal of soil and water conservation, 70(1): 1-11.
  11. Ayers, R.S., Westcot, D.W. 1985. Water quality for agriculture: Irrigation and Drainage paper no. 29. FAO, Rome, Italy, 174pp.
  12. Cardon, E.G., and Letey, J. 1992. Plant water uptake terms evaluated for soil water and solute movement models. Soil Science Society American Journal 56:1876-1880.
  13. Doorenbos, J., Kassam, A.H., 1979. Yield Response to Water. Irrigation & Drainage Paper No. 33. FAO, Rome.
  14. Droogers, P., Bastiaanssen, W.G.M., Beyazgül, M., Kayam, Y., Kite, G.W., Murray-Rust, H., 2000. Distributed agro-hydrological modeling of an irrigation system in Western Turkey. Agricultural Water Management, 43: 183–202.
  15. Eitzinger, J., Trnka, M., Hösch, J., Zalud, Z., Dubrovsky, M., 2004. Comparison of CERES, WOFOST and SWAP models in simulating soil water content during growing season under different soil conditions. Ecol. Model. 171, 223–246.
  16. Golabi, M., Naseri, A. A., and Kashkuli, H. A. 2009. Evaluation of SALTMED model performance in irrigation and drainage of sugarcane farms in Khuzestan province of Iran. Journal of Food, Agriculture & Environment 7(2):874-880.
  17. Hillel, D. 1977. Computer simulation of soil-water dynamics; a compendium of recent work. IDRC, Ottawa, Canada.
  18. Hirich, A., Choukr-Allah, R., Ragab, R., Jacobsen, S-E., EL youssfi, L., and El omari, H. 2012. The SALTMED model calibration and validation using field data from Morocco. J. Mater. Environment Science 3(2):342-359.
  19. Jacovides, C.P., and Kontoyiannis, H. 1955. Statistical procedures for the evaluation of Evapotranspiration computing models. Agricultural Water Management, 27: 365–371.
  20. Jiang, J., Feng, S., Huo, Z., Zhao, Z., Jia, B., 2011. Application of SWAP model to simulate water–salt transport under deficit irrigation with saline water. Mathematical and Computer Modelling, 45: 902–911.
  21. Kroes, J.G., van Dam, J.C., Huygen, J. and Vervoort, R.W. 1999. Users Guide of SWAP version 2.0. Simulation of Water Flow, Solute Transport and Plant Growth in the Soil-Water-Atmosphere-Plant environment, Technical Document 53. DLOW in and Staring Centre, Wageningen.
  22. Kumar, P., Sarangi, A., Singh, D.K., Parihar, S.S., Sahoo, R.N. 2015. Simulation of salt dynamics in the root zone and yield of wheat crop under irrigated saline regimes using SWAP model. Agricultural Water Management, 148: 72–83.
  23. Mehanna, H.M., Sabreen, R.H. P. and El-Hagarey, M.E. 2012. Validation of SALTMED model under different conditions of drought and fertilizer for snap bean in delta, Egypt. Minta International Conference for Agriculture and Irrigation in the Nile Basin Countries, 26-29 March, El-Minia, Egypt.
  24. Mualem, Y., 1976. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resource Research, 12 (3): 513–522.
  25. Oster, J. D., Letey, J., Vaughan, P., and Wu, L., Qadir, M. 2012. Comparison of transient state models that include salinity and matric stress effects on plant yield. Agricultural Water Management, 103:167-175.
  26. Ragab, R. 2002. A holistic generic integrated approach for irrigation, crop and field management the SALTMED model. Environmental Modelling & Software 17:345-361.
  27. Ragab, R., Malash, N., Abdel Gawad, G., Arsalan, A., and Ghaibeh, A. 2005. A holistic generic integrated approach for irrigation, crop and field management 2-The SALTMED model validation using field data of five growing seasons from Egypt and Syria. Agricultural Water Management, 78:89-107.
  28. Rameshwaran, P., Tepe, A., Yazar, A. and Ragab, R. 2014. The effect of saline irrigation water on the yield of pepper: experimental and modeling study. Published online in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/ird.1867.
  29. Razzaghi, F., Plauborg, F., Ahmadi, S. H., Jacobsen, S-E., Anderson, M. N., and Ragab, R. 2011. Simulation of quinoa (chenopodium quinoa wild.) response to soil salinity using the SALTMED model. ICID 21st International Congress on Irrigation and Drainage 15-23 October 2011, Tehran, Iran.
  30. Singh, R., Van Dam, J.C., Feddes, R.A., 2006. Water productivity analysis of irrigated crops in Sirsa district, India. Agricultural Water Management, 82: 253–278.
  31. Šimůnek, J., Sejna, M. and van Genuchten, M.T. 1998. The Hydrus-1D Software Package for Simulating the One-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably Saturated Media. Users Manual, Version 2.0, U.S. Salinity Laboratory, Agricultural Research Service, 178 pp.
  32. Smedema L.K., Rycroft. D.W. 1983. Land drainage: Planning and design of agricultural drainage systems: Cornell University Press (Ithaca, N.Y.), 376pp.
  33. van Genuchten, M.Th. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil. Sci. Soc. Am. J., 44: 892-898.
  34. Verma, A.K., Gupta, S.K., Isaac, R.K., 2012. Use of saline water for irrigation in monsoon climate and deep water table regions: simulation modeling with SWAP. Agricultural Water Management, 115: 186–193.