نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار پژوهش مرکز ملی تحقیقات شوری، سازمان تحقیقات، آموزش و ترویج کشاورزی، یزد، ایران.

2 محقق مرکز ملی تحقیقات شوری، سازمان تحقیقات، آموزش و ترویج کشاورزی، یزد، ایران.

چکیده

به منظور تعیین تأثیر شوری آب آبیاری و تراکم کوشیا (Kochia indicaبر میزان عملکرد، ارتفاع بوته و غلظت عناصر برگ سورگوم و کوشیا یک مطالعه مزرعه­ای در سال 1391 و 1392 در ایستگاه تحقیقاتی مرکز ملی تحقیقات شوری انجام شد. تیمارها شامل سطوح شوری آب آبیاری: 2 (شاهد)، 6، 10 و 14 دسی­زیمنس بر متر و کاشت کوشیا با تراکم­های 0/0، 2/5، 3/3 و 5/0 بوته در متر مربع در روی ردیف­های سورگوم بود. نتایج نشان داد که عملکرد ماده خشک سورگوم با افزایش تراکم کوشیا در تمام سطوح شوری کاهش یافت. آستانه تحمل به شوری سورگوم بر اساس میزان ماده خشک تولیدی 4/1 دسی­زیمنس بر متر بود. افزایش هر واحد شوری بیشتر از میزان آستانه، باعث کاهش عملکرد ماده خشک به میزان 5/10% گردید. برخلاف سورگوم، عملکرد ماده خشک کوشیا تحت تاثیر سطوح شوری در هر دو سال قرار نگرفت. شوری آب آبیاری باعث کاهش ارتفاع سورگوم و کوشیا در هر دو سال آزمایش گردید. بر اساس متوسط دو سال، در شوری­های آب آبیاری 2، 6، 10 و 14 دسی­زیمنس بر مترغلظت سدیم برگ کوشیا به ترتیب در حدود 94/4، 88/6، 78/7 و 76/8برابر بیشتر از غلظت سدیم برگ سورگوم بود. غلظت کلر برگ کوشیا در سال 1391 در شوری­های آب آبیاری 2، 6، 10 و 14 دسی­زیمنس بر متر به ترتیب در حدود 2/3،2/4، 2/0 و 2/2 برابر بیشتر از غلظت کلر برگ سورگوم بود. این میزان­ها در سال 1392 به ترتیب 3/6، 2/9، 2/5 و 1/9 برابر بود. غلظت کلسیم برگ کوشیا در سطوح شوری 2، 6، 10 و 14 دسی زیمنس بر متر به ترتیب 2/9،3/4، 2/4 و 2/7 برابر بیشتر از غلظت کلسیم برگ سورگوم بود. بطورکلی کوشیا می­تواند به عنوان یک گونه با توان رقابتی بالا، به شدت عملکرد گیاهان زراعی تابستانه از جمله سورگوم را در شرایط شور کاهش دهد. لذا توصیه می­شود کشت این گیاه به منظور تولید علوفه در اراضی غیر زراعی انجام گیرد.

کلیدواژه‌ها

عنوان مقاله [English]

Comparison of Yield and Leaf Minerals Concentration of Sorghum and Kochia under Irrigation Water Salinity and Different Kochia Planting Density

نویسندگان [English]

  • gh r 1
  • Vali Soltani Gerdfaramarzi 2

چکیده [English]

A field study was carried out to determine the effect of kochia (Kochia indica) planting density and water salinity on sorghum and kochia yield performance during 2012 and 2013. Treatments were irrigation water salinity levels (2, 6, 10 and 14 dS m-1) and kochia planting density of 0.0, 2.5, 3.3 and 5.0 plants m-2 on the sorghum rows. Results showed that sorghum dry matter (SDM) decreased as kochia density increased in all salinity levels. Salt tolerance threshold values for SDM were obtained at ECe 4.1 dS m-1. Each unit increase in ECe above this point reduced SDM by 10.5%. Contrary to the SDM, kochia dry matter was not affected by salinity levels in both years. Irrigation water salinity reduced height of sorghum and kochia in both years. Averaged over two years, leaf Na+ concentrations of kochia were 94.4, 86.6, 78.7, and 76.8 times more than that of sorghum at 2, 6, 10 and 14 dS m-1, respectively. Leaf Cl- concentrations of kochia were about 2.3, 2.4, 2.0 and 2.2 times higher than those obtained in sorghum under 2, 6, 10 and 14 dS m-1 salinity treatments in 2012, respectively. These values for 2013 were 3.6, 2.9, 2.5 and 1.9 times, respectively. Calcium concentration of kochia leaves at 2, 6, 10 and 14 dS m-1 were 2.9, 3.4, 2.4 and 2.7 times more than that of sorghum, respectively. In addition, kochia as a superior competitor could reduce yield of summer crops such as sorghum in saline conditions. It is recommended to cultivate the plant in marginal lands for forage production. 

کلیدواژه‌ها [English]

  • calcium
  • chloride
  • Competition
  • Salt tolerance threshold
  • sodium
  1. باغستانی، م.ع. و عطری، ع. 1382. ارزیابی و تعیین قدرت رقابتی گندم در برابر علف هرز چاودار (Secalecereal L.) با استفاده از مدل عکس عملکرد در منطقه کرج. مجله آفات و بیماری­های گیاهی. جلد 71، صفحات 56-433.
  2. بناکار، م.ح. 1392. مقایسه سیستم‌های مختلف آبیاری بر روی تولید علوفه گیاهان شورپسند در شرایط شور. گزارش نهایی مرکز ملی تحقیقات شوری. سازمان تحیقات آموزش و ترویج کشاورزی. شماره فروست 43303.
  3. پرچمی، پ. و بهداروند، پ. 1388. رقابت تراکم های مختلف یولاف وحشی با گندم بهاره در مقادیر مختلف نیتروژن. مجله فیزیولوژی گیاهان زراعی. جلد 3، صفحات 81-88.
  4. 4.پورآذر، ر. و غدیری، ح. 1380. رقابت یولاف وحشی (Avena fatua L.) با سه رقم گندم زمستانه (Triticum aestivum L.) در شرایط مزرعه. بیماریهای گیاهی. 37، صفحات 167-1733.
  1. Aguyoh, J.N., and Masiunas, J.B. 2003. Interference of redroot pigweed (Amaranthus retroflexus) with snap beans. Weed Sci. 51: 202-207.
  2. Alshammary, S.F., Qian, Y.L. and Wallner, S.J.. 2004. Growth response of four turfgrass species to salinity. Agric. Water Manag. 66: 97-111.
  3. Bernstein, N., Silk, W.K. and Lauchli, A. 2001. Spatial and temporal aspects of sorghum leaf growth under conditions of NaCl stress. Planta 191: 433-439.
  4. Berti, A., and Sattin, M. 1996. Effect of weed position on yield loss in soybean and a comparison between relative weed cover and other regression models. Weed Res. 36: 249-258.
  5. Blackshaw, R.E., and Molnar, L.J. 2009. Phosphorus fertilizer application method affects weed growth and competition with wheat. Weed Sci. 57: 311-318.
  6. Blackshaw, R.E., and Brandt, R.N. 2009. Phosphorous fertilizer effects on the competition between wheat and several weed species. Weed Biol. Manag. 9: 46-53.
  7. Blackshaw, R.E., Brandt, R.N., Janzen, H.H. and Entz, T. 2004. Weed species response to phosphorus fertilization. Weed Sci. 52: 406-412.
  8. Borg, H., and Grimes, D.W. 1986. Depth development of roots with time: An empirical description. Trans. ASAE. 29: 194-197.
  9. Feltner, K.C., Hurst, H.R. and Anderson, L.E. 1969. Yellow foxtail competition in grain sorghum. Weed Sci. 17: 211-213.
  10. Flowers, T.J., Troke, P.F. and Yeo, A.R. 1977. The mechanism of salt tolerance in halophytes. Annual Rev. Plant Physiol. 28: 89-121.
  11. Francois, L E., Donovan, T. and Maas, E.V. 1984. Salinity effects on seed yield, growth, and germination of grain sorghum. Agron. J. 76: 741-744.
  12. Glenn, E.P., Oleary, J.W., Watson, M.C., Thompson, T.L. and Kuehl, R.O. 1991. Salicornia bigelovii Torr. an oilseed halophyte for seawater irrigation. Sci. 251: 1065–1067.
  13. Hanson, B.R., Grattan, S.R. and Fulton, A. 2006. Agricultural salinity and drainage. University of California, Davis.
  14. Huang, J. and Redmann, R.E. 1995. Physiological responses of canola and wild mustard to salinity and contrasting calcium supply. J. Plant Nut. 18: 1931-1949.
  15. Hurkman, W.J. 1992. Effect of salt stress on plant gene expression: a review. Plant Soil. 146: 145-151.
  16. Igartua, E., Garcia, M.P. and Lasa, J.M. 1995. Field responses of grain sorghum to a salinity gradient. Field Crops Res. 42: 15-25.
  17. Kafi, M., Nabati, J. and Mehrjerdi, Z.M. 2011. Effect of salinity and silicon application on oxidative damage of sorghum [Sorghum bicolor (L.) Moench). Pak. J. Bot. 43: 2457-2462.
  18. Kim, Y., Arihara, J., Nakayama, T., Nakayama, N., Shimada, Sh., and Usui, K. 2004. Antioxidative responses and their relation to salt tolerance in Echinochloa oryzicola Vasing and Setaria virdis (L.) Beauv. Plant Growth Reg. 44: 87-92.
  19. Knezevic, S.Z., Horak, M.J. and Vanderlip, R.L. 1997. Relative time of redroot pigweed (Amaranthus retroflexus L.) emergence is critical in pigweed–sorghum [Sorghum bicolor (L) Moench] competition. Weed Sci. 45: 502-508.
  20. Lauchli, A., and Grattan, S.R. 2007. Plant growth and development under salinity stress. In: M.A. Jenks, P. M. Hasegawa & S. M. Jain (Eds.). Advances in Molecular Breeding toward Drought and Salt Tolerant Crops. (pp. 1-32). Springer publication. Netherlands.
  21. Lee, G., Duncan, R.R. and Carrow, R.N. 2004. Salinity tolerance of seashore paspalum ecotypes: shoot growth responses and criteria. HortSci. 39: 1138-1142.
  22. Maas, E.V., and Hoffman, G.J. 1977. Crop salt tolerance-current assessment. J. Irrig. Drain. Division. 103: 115-134.
  23. Mahmood, K.H. 1997. Competitive superiority of Kochia indica over Leptochloa fusca (kallar grass) under varying levels of soil moisture and salinity. Pak. J. Bot. 29: 289-297.
  24. Malicki, L. and Berbeciowa, C. 1986. Uptake of more important mineral components by common field weeds on loess soils. Acta Agrobot. 39: 129- 141.
  25. Mesbah, A., S., Miller, K.J., Fornstrom, and D.E. Legg. 1994. Kochia (Kochia scoparia) and green foxtail (Setaria viridis) interference in sugarbeets (Beta vulgaris). Weed Tech. 8: 754-759.
  26. Min, W., Hou, Z., Ma, L., Zhang, W., Ru, S. and Ye, J. 2014. Effects of water salinity and N application rate on water-and N-use efficiency of cotton under drip irrigation. J. Arid Land 6: 454-467.
  27. Moore, J.W., Murray, D.S. and Westerman, R.B. 2004. Palmer amaranth (Amaranthus palmeri) effects on the harvest and yield of grain sorghum (Sorghum bicolor). Weed Tech. 18: 23-29.
  28. Morales-Payan, J.P., Stall, W.M., Shilling, D.G., Charudattan, R., Dusky, J.A. and T.A. Bewick. 2003. Above- and belowground interference of purple and yellow nutsedge (Cyperus spp.) with tomato. Weed Sci. 51, 181-185.
  29. Munns, R., and Tester, M. 2008. Mechanisms of salinity tolerance. Annual Rev. Plant Biol. 59: 651-681.
  30. Patterson, D.T. 1985. Comparative ecophysiology of weeds and crops. In: S. O.  Duke (Eds.). Weed Physiology, Vol. 1: Reproduction and Ecophysiology. (pp. 101-129). CRC press, Boca Raton, Florida.
  31. Schweizer, E.E. 1981. Broadleaf weed interference in sugar beets (Beta vulgaris). Weed Sci. 29: 128-133.
  32. Schwinghamer, T.D., and Van Acker, R.C. 2009. Emergence timing and persistence of kochia (Kochia scoparia). Weed Sci. 56: 37-41.
  33. Sinha, S., Gupta, R. and Rana, R.S. 1986. Effect of soil salinity and soil water availability on growth and chemical composition of Sorghum halepense L. Plant Soil. 95: 411-416.
  34. Volkmar, K.., Hu, Y., and Steppuhn, H. 1998. Physiological responses of plants to salinity: A review. Can. J. Plant Sci. 78: 19-27.
  35. Weatherspoon, D.M., and Schweizer, E.E. 1971. Competition between sugar beets and five densities of kochia. Weed Sci. 19: 125-128.
  36. Zimdahl, R.L. 2004. Weed Crop Competition: A Review. (2nd ed). Blackwell publishing.