نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد گروه مهندسی آب دانشگاه علوم کشاورزی و منابع طبیعی ساری

2 عضو هیات علمی دانشگاه علوم کشاورزی و منابع طبیعی ساری

3 مربی گروه مهندسی آب دانشگاه علوم کشاورزی و منابع طبیعی ساری

چکیده

زهکشی زیرزمینی، به­عنوان یک تغییر ساختاری در راستای بهبود بهره­وری اراضی شالیزاری، هیدرولوژی این اراضی را تغییر می­دهد. در این پژوهش، با استفاده از مدل DRAINMOD-S،تأثیر مدیریت­های زهکشی آزاد و کنترل‌شده بر مؤلفه‌های بیلان آب و شوری زهاب در کشت کلزای دیم به عنوان کشت دوم، پس از برنج در اراضی شالیزاری بررسی شد. داده­های موردنیاز برای ارزیابی مدل طی دو فصل کشت کلزا (1396-1394) از یک مزرعه شالیزاری دارای سامانه زهکشی زیرزمینی (عمق زهکش 65/0 متر و فاصله زهکش 30 متر) تهیه شد. با استفاده از مدل واسنجی و صحت­سنجی شده، تأثیر سامانه‌های مختلف زهکشی زیرزمینی معمولی و کنترل شده (با کنترل عمق سطح ایستابی در 40 سانتی­متری از سطح زمین) بر بیلان آب و شوری خاک و زهاب ارزیابی شد. مدل از قابلیت قابل قبولی برای برآورد عمق سطح ایستابی و شوری زهاب در فرایندهای واسنجی و صحت­سنجی برخوردار بود. بر اساس شبیه­سازی­ها، برای عمق زهکش 5/1 متر، افزایش فاصله زهکش­ها از 30 به 70 متر در دو سامانه زهکشی آزاد و کنترل‌شده، بار نمک خروجی را به­ترتیب 3/805 و 6/741 کیلو­گرم بر هکتار کاهش داد. برای فاصله زهکش 30 متر، با افزایش عمق زهکش­ها از 5/0 به 8/1 متر، حجم زهاب خروجی در سامانه زهکشی کنترل‌شده از 7/2 به 9 سانتی­متر و در سامانه زهکشی آزاد از 1/5 به 3/14 سانتی­متر افزایش یافت. براساس نتایج شبیه­سازی­ها، برای کاهش تخلیه نمک، مناسب­ترین عمق و فاصله زهکش چه در زهکشی آزاد و چه در  زهکشی کنترل شده به­ترتیب  5/0  و30 متر بود. نتایج نشان داد که، سامانه زهکشی کنترل‌شده می­تواند به­عنوان یک ابزار مدیریتی مفید برای کاهش مسائل زیست‌محیطی از منظر میزان بار نمک و زهابدر زراعت کلزا به عنوان کشت دوم در اراضی شالیزاری  مورد استفاده قرار گیرد.

کلیدواژه‌ها

عنوان مقاله [English]

Effect of Free and Controlled Drainage on Water Balance and Soil and Drainage Water Salinity under Rainfed Canola in Paddy Fields

نویسندگان [English]

  • Kolsom Davoodi 1
  • abdollah darzi 2
  • Ghasem Aghajani- Mazandarani 3

1 MSc student in irrigation and drainage engineering, Water Engineering Department, Sari Agricultural Sciences and Natural Resources University, Sari, Iran

2 Assisstant Professor, Water Engineering Department Sari Agricultural Sciences and Natural Resources University.

3 Water Engineering Department, Sari Agricultural Sciences and Natural Resources University, Sari, Iran

چکیده [English]

Subsurface drainage, as a structural modification to improve the productivity of paddy fields, changes the hydrology of the fields. In this research, the response of water balance and drainage water salinity to free and controlled subsurface drainage systems during winter cropping in paddy fields was investigated by using the DRAINMOD-S model. The data were collected during two canola growing seasons (2015-2017) from a paddy field with a subsurface drainage system (drain depth of 0.65 m and drain spacing of 30 m). The calibrated and validated model was applied to explore effects of conventional and controlled (by controlling water table depth at 40 cm)- subsurface drainage on water balance and soil and drainage water salinity. The model showed acceptable capability for simulating water table depth and drainage water salinity during calibration and validation processes. Based on the simulations, for drain depth of 1.5 m, increase in drain spacing from 30 to 70 m resulted in 805.3 and 741.6 kg ha-1 decrease in total salt load under free and controlled drainage systems, respectively. For drain spacing of 30 m, increase in drain depth from 0.5 to 1.8 m, caused 2.7- 9 mm and 5.1- 14.3 mm increase in drainage water in controlled and free drainage systems, respectively. Simulation results indicated that, to decrease salt load, a drainage system with 30 m drain spacing and 0.5 m drain depth is suitable for both free and controlled drainage conditions. Based on the results, controlled drainage can be used as a management tool to diminish environmental problems in heavy paddy soils from the viewpoint of salt load and drainage water volume. 

کلیدواژه‌ها [English]

  • DRAINMOD-S
  • Deep percolation
  • Water table depth
  1. بخت­فیروز، ع. 1390. بررسی اثر سامانه­های زهکشی بر گسیل گاز متان و دی­اکسید کربن از شالیزار­ها. پایان­نامه کارشناسی ارشد دانشگاه علوم کشاورزی و منابع طبیعی ساری، 50 صفحه.
  2. حسین­پور، ف.، نوری م.ر. امامزاده­ئی.، م. خدامباشی امامی. و م. زمانیان. 1391. تأثیر زهکشی کنترل‌شده بر عملکرد سویا و ارتقاء کارایی مصرف آب. نشریه آبیاری و زهکشی ایران. (6) 1. 20-11.
  3. درزی نفت­چالی، ع. 1395. تحلیل تأثیر مدیریت زهکشی بر شوری زه‌آب در تناوب کشت برنج‌- کلزا. نشریه آبیاری و زهکشی ایران. (10) 4. 531- 520.
  4. دوستی­پاشاکلایی، س.، ع. شاهنظری. و م. جعفری­تلوکلایی. 1395. بررسی عملکرد کلزا به­عنوان کشت دوم در اراضی شالیزاری دارای زهکش زیرزمینی. نشریه پژوهش­های حفاظت آب‌وخاک. (1) 24. 249- 237.
  5. علیزاده، ا. 1380. رابطه آب‌وخاک و گیاه، چاپ دوم، انتشارات آستان قدس رضوی، 353 ص.
  6. علیزاده، م.، پ. افراسیاب.، م.ر. یزدانی.، ع. لیاقت. و م. دلبری. 1395. ارزیابی اثر فاصله و عمق زهکش­های زیرزمینی در اراضی شالیزاری، به منظور توسعه کشت دوم در یک مزرعه نمونه در گیلان. نشریه پژوهش آب در کشاورزی. (2) 30. 172- 160.
  7. محجوبی، آ. 1391. بررسی اثرات زهکشی کنترل‌شده بر روی شوری خاک، مدیریت آبیاری و عملکرد نیشکر در کشت وصنعت امام خمینی. پایان نامه دکتری، دانشکده مهندسی علوم آب، دانشگاه شهید چمران اهواز. 180 صفحه.
  8. محجوبی، آ.، ع. هوشمند.، ع. ناصری. و س. جعفری. 1392. اثر زهکشی کنترل‌شده بر روی کاهش ضریب زهکشی و حجم زهاب خروجی در مزارع نیشکر کشت و صنعت امام خمینی. نشریه آب‌وخاک (علوم و صنایع کشاورزی)، (6) 27: 1144- 1133.
  9. نوذری، ح.، آ. پور­صمدی. و ع. زالی. 1395. بررسی آزمایشگاهی تأثیر آرایش منافذ لوله­های زهکش بر میزان نمک زه­آب خروجی. نشریه دانش آب و خاک، (3) 27: 198- 187.
    1. Ayars, J.E., Christen, E.W., and J.W. Hornbuckle. 2006. Controlled drainage for improved water management in arid regions irrigated agriculture. Agric. Water Manage. 86 (1–2), 128–139.
    2. Ayars, J.E., Patton, S.H., and R.A. Schoneman. 1987. Drain water quality from arid irrigated lands. Proc., ASAE 5th National Drain Symp. W.R. Johnston, ed., American Society of Agricultural and Engineers, St. Joseph, MI, 220–230.
    3. Breve M.A., Skaggs R.W., Parsons J.E., Gilliam J.W., Mohammad A.T., Chescheir G.M., and R.O. Evans, 1997 .Field testing Of DRAINMOD-N. Soil & Water Div. of ASAE. l40 (4):1077-1085.
    4. Christen E., and D. Skehan. 2001. Design and management of subsurface horizontal drainage to reduce salt loads. Journal of Irrigation and Drainage Engineering, 127(3):148-155.
    5. F.A.O, 1986, Drainage testing, Food and Agriculture Organization, Irrigation and Drainage paper, No. 28, Rome, Italy.
    6. Grismer, M.E. 1993. Subsurface drainage system design and drain water quality. Journal of Irrigation and Drainage Engineering, 119 (3):537-543.
    7. Hornbuckle, J.W., Christen, E.W., and R.D. Faulkner. 2007. Evaluating a multilevel subsurface drainage system for improved drainage water quality. Agriculture Water Management, 89(3):208–216.
    8. Helwig, T.G., Madramootoo, C.A., G.T. Dodds. 2002. Modeling nitrate losses in drainage water using DRAINMOD 5, 0. Agr. Water Manage. 56(2), 153-168.
    9. Jafari-Talukolaee, M., Shahnazari, A., Ahmadi, M. Z., and A. Darzi-Naftchali. 2015. Drain discharge and salt load in response to subsurface drain depth and spacing in paddy fields. Journal of Irrigation and Drainage Engineering, 141(11):4010-5017.
    10. Jury, W.A. 1975. Solute travel-time estimates for tile-drained fields. I. Theory. Soil Science Society of America Proceeding, 39: 1020–1023.
    11. Kandil, H. M. 1992. DRAINMOD-S: A Water management model for irrigated arid lands. PhD Thesis. North Carolina State University.
    12. Kandil, H.M., Skaggs, R.W., Dayem, S. A., and Y. Aiad. 1995. DRAINMOD-S: Water management model for irrigated arid lands, crop yield and applications. Irrigation and Drainage Systems, 9(3): 239-258.‏
    13. Legates, D.R., and G.J. Mc Cabe. 1999. Evaluating the use of goodness-of-fit measures in hydrologic and hydroclimatic model validation. Water Resources Research, 35: 233-241.
    14. Lalonde, V., Madramootoo, C.A., Trenholm, L., and R.S. Broughton. 1996. Effects of controlled drainage on nitrate concentrations in subsurface drain discharge. Agriculture Water Management, 29: 187–199.
    15. Malik, A., Colmer, T.D., Lambers, H., and M. Schortemyer. 2001. Changes in physiological and morphological traits of roots and shoots of wheat in response to different depths of water logging. Australian J. Plant. Physiol., 28: 1121-1131.
    16. Nash, J. E., and J. V. Sutcliffe. 1970. River flow forecasting through conceptual models, A discussion of principles. Journal of Hydrology, 10: 282-290.
    17. Skaggs, R.W. 1982. Field evaluation of a water management simulation model. Transactions of the ASAE, 25(4): 666 – 674.
    18. Skaggs, R.W. 1980. Drainmod Reference Report; Methods for design and evaluation of drainage water management systems for soils with high water tables, USDA, SCS, North Carolina State University, Raliegh,p. 185.
    19. Skaggs, R.W., Youssef,M.A and G.M. Chescheir. 2012. DRAINMOD: model use, calibration and validation. Transactions of the ASABE. 55 .2:1509-1522.
    20. Tan, C.S., and T.Q. Zhang. 2011. Surface runoff and sub-surface drainage phosphorus losses under regular free drainage and controlled drainage with sub-irrigation systems in southern Ontario. Can J Soil Sci. 91:349–359.
    21. Visser, E.J.W., and L.A.C.J Voesenek. 2004. Acclimation to soil flooding sensing and signal transduction. Plant Soil, 244: 197-214.
    22. Voltman, W.F., and H.C. Jansen. 2003, Controlled drainage for integrated water management. 9th International drainage workshop, Utreched. The Netherlands. Paper No 125.
    23. Wahba, M.A.S., and E.W. Christen. 2006. Modeling subsurface drainage for salt load management in southeastern Australia. Irrigation and Drainage Systems, 20(2-3): 267-282.‏
    24. Wahba, M.A.S., Christen, E.W., and M.H. Amer. 2005. Irrigation water saving by management of existing subsurface drainage in Egypt. Irrig. Drain. 54: 1–11.
    25. Wang, X., Mosley, C.T., Frankenberger, J.R., and E.J. Kladivko. 2006. Subsurface drain flow and crop yield predictions for different drain spacings using DRAINMOD. Agricultural Water Management, 79(2):113-136.
    26. Wesström, I., Joel, A. and I. Messing. 2014. Controlled drainage and subirrigation–A water management option to reduce non-point source pollution from agricultural land. Agriculture, ecosystems & environment, 198, 74-82.
    27. Wesstrom, I., and I. Messing. 2007. Effects of Controlled drainage on N & P losses and N dynamics in loamy sand with spring crops. Agriculture Water Management, 87: 229-240.
    28. Wesstrom, I., Messing, I., Linner, H., and J. Lindstrom. 2001. Controlled drainage- effects on drain outflow and water quality. Agricultural Water Management, 85-100.
    29. Zhang, H., Turner, N.C., and M.L Poole. 2004. Yield of wheat and canola in the high rainfall zone of south-western Australia in years with and without a transient perched water table. Austr. J. Agric. Res. 55(4): 461-470.