نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی ارشد رشته مهندسی آبیاری و زهکشی، دانشگاه علوم کشاورزی و منابع طبیعی، ساری، ایران.

2 دانشیار گروه مهندسی آب، دانشگاه علوم کشاورزی و منابع طبیعی، ساری، ایران.

3 استادیار گروه مهندسی آب دانشگاه علوم کشاورزی و منابع طبیعی ساری

4 دانشجوی دکتری رشته آبیاری و زهکشی، دانشگاه علوم کشاورزی و منابع طبیعی، ساری، ایران.

چکیده

نیترات از گسترده­ترین آلاینده­های آب­های زیرزمینی و سطحی است که مقدار بیش‌ازحد آن در منابع آبی بر سلامت انسان و دام تأثیرمی­گذارد. در میان روش­های مختلف حذف نیترات، روش جذب سطحی، به علت سادگی، به‌صرفه بودن ازلحاظ اقتصادی و کارایی مورد توجه است. در پژوهش حاضر اثر متغیرهای pH (چهار، شش و هشت)، نرخ جریان (8، 11 و 16 میلی­لیتر بر دقیقه)، ارتفاع بستر (40، 50 و 60 سانتی­متر) و قطر ستون (45، 57 و 67 میلی­متر) در حذف نیترات از محلول­های آبی با استفاده از ستون­های زئولیت اصلاح­شده بررسی شد. برای تعیین سطح ویژه و قطر خلل و فرج از آنالیز BETاستفاده شد. مورفولوژی و ساختار کانی زئولیت مورد مطالعه با استفاده از آنالیزهای تعیین پراش پرتو ایکس (XRD)، اسپکتروسکوپی اشعه ایکس انرژی متفرق (EDS) و عکس­برداری میکروسکوپی الکترونی روبشی (SEM) موردبررسی و شناسایی قرار گرفت. برای اصلاح سطح زئولیت­ها، از محلول هگزادسیل­تری­متیل­آمونیوم برماید به غلظت 25 میلی­مولار استفاده شد. زه­آب کشاورزی با غلطت 80 میلی­گرم در لیتر نیترات، به‌صورت مصنوعی با حل کردن نمک پتاسیم نیترات در آب مقطر در آزمایشگاه تهیه شد. نتایج آنالیزها نشان داد که نمونه زئولیت از نوع کلینوپتیلولایت به­ترتیب با سطح ویژه و میانگین قطر خلل و فرج 984/11 مترمربع در گرم و 295/15 نانومتر است. یافته­ها نشان داد که تغییرات pH، نرخ جریان، ارتفاع بستر و قطر ستون بر شاخص­های مختلف منحنی رخنه اثر معنی‌‌دار (در سطح پنج درصد) دارد. حداکثر مقدار جذب در6=pH رخ داد، در حالی­که حداکثر راندمان جذب (24/65 درصد) در 8=pH حاصل شد. کاهش نرخ جریان باعث افزایش راندمان حذف نیترات شد، اما بیشترین مقدار جذب (2/0 میلی­گرم بر گرم) در نرخ جریان 11 میلی­لیتر در دقیقه رخ داد. بیشترین مقدار جذب و راندمان حذف به­ترتیب در ارتفاع بستر 60 سانتی­متر و قطر ستون 67 میلی­متر رخ داد.          

کلیدواژه‌ها

عنوان مقاله [English]

Evaluation of the Efficiency of Modified Zeolite in Nitrate Removal from Agricultural Drainage Water Using Fixed Bed Columns

نویسندگان [English]

  • zahra bagheri khalili 1
  • Mohammad Ali Gholami Sefidkouhi 2
  • mojtaba khoshravesh 3
  • jamal abbas palangi 4

1 MSc. Irrigation and Drainage Engineering, Sari Agricultural Sciences and Natural Resources University, , Iran.

2 Associate Professor, Department of Water Engineering, Sari Agricultural Sciences and Natural Resources University, Iran.

3 Assistant Professor, Department of Water Engineering, Sari Agricultural Sciences and Natural Resources University, Iran.

4 PhD. Candidate in Irrigation and Drainage Engineering, Sari Agricultural Sciences and Natural Resources University, Iran.

چکیده [English]

Nitrate is one of the worldwide pollutants of groundwater and surface water, which affects human and livestock health at high concentration levels in water resources. Among the different techniques of nitrate removal, adsorption method has attracted attention, due to simplicity, cost-effectiveness, and efficiency. In this research, the effect of variables pH (4, 6, and 8), flow rate (8, 11, and 16 mL/min), bed height (40, 50, and 60 cm), and column diameter (45, 57, and 67 mm) were investigated on nitrate removal from aqueous solutions by modified zeolites column. The BET analysis was used to determine the specific surface and diameter of the pores. Structure and morphology of zeolite was determined using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). For modification of zeolite levels, the hexadecyltrimethylammonium bromide solution with concentration of 25 mM was used. The agricultural drainage water with concentration of 80 mg L-1 nitrate was artificially prepared by dissolving potassium nitrate salt in distilled water in the laboratory. The result of the analysis showed that the zeolite sample was from the clinoptilolite type, with specific surface area and mean pore diameter of 11.984 m2g-1 and 15.295 nm, respectively. The results also showed that changes in pH, flow rate, bed height, and column diameter on different indexes of breakthrough curve were significant at 5% level. The maximum adsorption rate occurred at pH=6, while the maximum adsorption efficiency (65.24%) occurred at pH= 8. The reduction of the flow rate caused increase in nitrate removal efficiency, but the highest amount of adsorption (0.2 mg g-1) occurred at a flow rate of 11 mL/min. The highest amount of absorption and removal efficiency occurred at the bed height and column diameter of 60 cm and 67 mm, respectively.

کلیدواژه‌ها [English]

  • Bed height
  • Nitrate removal efficiency
  • Column diameter
  • Flow rate
  • Breakthrough curve
  1. سلیمانی، م.  انصاری، آ.  حاج عباسی، م. ع. و عابدی کوپایی، ج. 1387. بررسی حذف نیترات و آمونیم از آب‌های زیرزمینی با استفاده از فیلترهای کانساری. آب و فاضلاب، 67: 18-26.
  2. فراستی، م.، برومند نسب، س.، معاضد، ه.، جعفرزاده حقیقی فرد، ن.، سیّدیان، م. 1392. حذف نیترات از آب‌های آلوده با استفاده از نانوذرات نی اصلاح‌‌شده. آب و فاضلاب، 24(1): 42-34.
  3. کیانی، ه. شامحمدی، ش. هادی، م. 1392. بررسی منحنی­های شکست بستر ستون برای حذف منگنز از محیط­های آبی با استفاده از ماسه. محیط‌شناسی،39(1): 21-30.
  4. مهدوی، ع. لیاقت، ع. و شیخ­محمدی، ی.1390. حذف نیترات از زه آب کشاورزی با استفاده از زئولیت اصلاح‌‌شده. پژوهش آب ایران، 5(8): 117-124.
  5. موسوی، ع. و اسدی، ح. 1390. حذف نیترات از آب زیرزمینی با استفاده از ستون جاذب حاوی رزین Purolite A-400 . نشریه دانش آب‌وخاک، 21(4): 17-34.
  6. نائیج ا.، محسنی بندپی ا.، جنیدی جعفری ا.، اسرافیلی ع.، رضایی کلانتری ر. حذف نیترات از آب با استفاده از نانو ذرات آهن صفر نشانده شده بر زئولیت. 1391. مجله سلامت و محیط، فصلنامه‌ی علمی پژوهشی انجمن علمی بهداشت محیط ایران، 5(3): 354-343.
  7. نیسی، ع.، بابایی، و.، مظفری، ص. 1395. بررسی کارایی زئولیت‌های کلینوپتی‌لولایت اصلاح‌شده با سورفکتانت‌های هگزا‌دسیل‌تری‌متیل آمونیوم کلراید و n ستیل پیریدینیوم بروماید در حذف نیترات از محلول‌های آبی. مجله دانشگاه علوم پزشکی رفسنجان، 15(4): 354-343.
    1. Bhatnagar, A. and Sillanpää, M. 2011. A review of emerging adsorbents for nitrate removal from water. Chemical Engineering Journal, 168(2): 493-504.‏
    2. Chapman, H.D. 1965. Cation exchange capacity, Black, C. A., edition. Method of soil analysis. SSSA, Madison, Wisc. PP. 891-901.
    3. Golie, W. M. and Upadhyayula, S. 2016. Continuous fixed-bed column study for the removal of nitrate from water using chitosan/alumina composite. Journal of Water Process Engineering,12: 58-65.‏
    4. He, Y., Lin, H., Dong, Y., Liu, Q. and Wang, L. 2016. Simultaneous removal of phosphate and ammonium using salt–thermal-activated and lanthanum-doped zeolite: fixed-bed column and mechanism study. Journal of Desalination and Water Treatment, 57(56): 27279-27293.‏
    5. Jiang, X., Xie, H., and Wang, Y. 2008. Application of zeolite water treatment. Journal of Water Science, Technology and Economy, 14(9):215-231.
    6. Khan, M. A., Ahn, Y. T., Kumar, M., Lee, W., Min, B., Kim, G. and Jeon, B. H. 2011. Adsorption studies for the removal of nitrate using modified lignite granular activated carbon. Journal of Separation Science and Technology, 46(16): 2575-2584.‏
    7. Masukume, M., Eskandarpour, A., Onyango, M.S., Ochieng, A. and Otieno, F. 2011. Treating high nitrate groundwater using surfactant modified zeolite in fixed bed column. Journal of Separation Science and Technology,46(7): 1131-1137.
    8. McIntyre, N.R. and Wheater, H.S. 2004. A tool for risk-based management of surface water quality. Journal of Environmental Modeling and Software, 19(12): 1131-1140.
    9. McIntyre, N.R., Wagener, T., Wheater, H.S. and Chapra, S.C. 2003. Risk-based modelling of surface water quality: a case study of the Charles River, Massachusetts. Journal of Hydrology,274(1): 225-247.
    10. Nguyen, T.A.H., Ngo, H.H., Guo, W.S., Pham, T.Q., Li, F.M., Nguyen, T.V. and Bui, X.T. 2015. Adsorption of phosphate from aqueous solutions and sewage using zirconium loaded okara (ZLO): fixed-bed column study. Journal of Science of the Total Environment, 523: 40-49.‏ ‏
    11. Onyango, M.S., Masukume, M., Ochieng, A. and Otieno, F. 2010. Functionalised natural zeolite and its potential for treating drinking water containing excess amount of nitrate. Journal of  Water SA. 36(5): 655-662.
    12. Singh, P.K., Banerjee, S., Srivastava, A.L., and Sharma, Y.C. 2015. Kinetic and equilibrium modeling for removal of nitrate from aqueous solutions and drinking water by a potential adsorbent, hydrous bismuth oxide. Journal of RSC Advances, 5(45): 35365-35376.‏
    13. Standard Association of Iran. 1997. Characteristics of drinking water, 1053 Number Standard Method. Firth and fifth Ed., Tehran. (In Persian)
    14. Torabian, A., Kazemian, H., Seifi, L., Bidhendi, G.N., Azimi, A.A. and Ghadiri, S.K. 2010. Removal of Petroleum Aromatic Hydrocarbons by Surfactant‐modified Natural Zeolite: The Effect of Surfactant. Journal of Clean–Soil, Air, Water, 38(1): 77-83.‏
    15. Viessman W., Hammer M.J., Perez E.M. and Chadik P.A. 2005. Water supply and pollution control (7th ed). New Jersey (NJ): Pearson Prentice Hall.‏
    16. Xu, X., Gao, B., Tan, X., Zhang, X., Yue, Q., Wang, Y., and Li, Q. (2013). Nitrate adsorption by stratified wheat straw resin in lab-scale columns. Chemical Engineering Journal, 226, 1-6.