نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار مرکز ملی تحقیقات شوری، سازمان تحقیقات، آموزش و ترویج کشاورزی، یزد، ایران.

2 دانشیار پژوهشکده میوه‌های معتدله و سردسیری، موسسه تحقیقات علوم باغبانی، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران.

3 دانشیار گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه گیلان، رشت، ایران.

4 عضو هیات علمی

چکیده

 
آستانه تحمل به شوری گیاهان باغی بر اساس میزان کاهش عملکرد در شرایط شور در مقایسه با شرایط غیرشور بدست می­آید. به­منظور تعیین آستانه تحمل به شوری و شیب کاهش عملکرد در برخی از ارقام و ژنوتیپ­های انتخابی بادام، پژوهشی به صورت آزمایش فاکتوریل بر پایه طرح کاملأ تصادفیبادوعاملژنوتیپبادام در11 سطح (تونو، نانپاریل، مامایی، شکوفه، سهند، شاهرود12، A200،25-1، 16-1 و40-13 پیوندشدهرویپایهGF677 وپایه GF677 (پیوند نشده به عنوان شاهد)) و شوریآبآبیاریدر پنجسطح (5/0، 5/2، 9/4، 3/7 و 8/9 دسی­زیمنسبرمتر)، انجامشد.در پایان پژوهش، آستانه تحمل به شوری و شیب کاهش عملکرد در ژنوتیپ­های مورد مطالعه بر حسب بیوماس گیاهان محاسبه شد. نتایج نشان داد کهکمترین میزان آستانه تحمل به شوری مربوط به ژنوتیپ 16-1 (22/2 دسی­زیمنس­بر­متر) بود و پس از آن ارقام مامایی (28/2 دسی­زیمنس­بر­متر) و سهند (39/2 دسی­زیمنس­بر­متر)، قرار داشت. در نقطه مقابل، بیشترین آستانه تحمل به شوری در رقم­های شکوفه، شاهرود 12 و ژنوتیپ 25-1 به ترتیب به میزان (80/5، 84/4 و 80/4 دسی­زیمنس­بر­متر)، مشاهده شد. بیشترین شیب کاهش عملکرد با افزایش شوری در ژنوتیپ 40-13 (05/8 درصد)، و پس از آن در ارقام A200(86/7 درصد) و نان­پاریل (55/7 درصد)، ثبت شد. در نقطه مقابل، کمترین مقدار شیب کاهش عملکرد در رقم­های شاهرود 12(60/5 درصد)دیده شد. در مجموع نتایج نشان داد، میزان شوری که موجب کاهش عملکرد 50 درصدی در ارقام شاهرود12، شکوفه و ژنوتیپ 25-1، می­شود، به ترتیب 05/5، 43/4 و 55/3 دسی­زیمنس برمتر نسبت به پایه­های شاهد (بدون پیوند)، بیشتر است. کاهش 50 درصدی در عملکرد رقم­های شاهرود12، شکوفه، ژنوتیپ 25-1 و پایه GF677به­ترتیبدر شوری­های 23/13، 59/12، 71/11 و 16/8 دسی­زیمنس­برمتر مشاهده شد. گفتنی است که در پژوهش­های قبلی گزارش شده است کهدر شوری هفت دسی‏زیمنس­بر­متر تا میزان 100 درصد از عملکرد (بیوماس) درختان بادام کاسته می­شود، در حالیکه در ارقام شاهرود 12 و شکوفه پیوند شده روی پایه GF677در شوری هفت دسی‏زیمنس بر متر تنها به ترتیب 12 و 9 درصد از عملکرد کاسته شد.بر این اساس می­توان ترکیب­های پیوندی مذکور را برای مناطقی با شوری­های متوسط توصیه نمود.

کلیدواژه‌ها

عنوان مقاله [English]

Evaluation of Salinity Tolerance Threshold in 11 Selected Almond Cultivars and Genotypes

نویسندگان [English]

  • Ali Momenpour 1
  • Ali Imani 2
  • davod bakhshi 3
  • Gholamhasan ranjbar 4

1 Assistant Professor, National Salinity Research Center, Agricultural Research, Education and Extension Organization (AREEO), Yazd, Iran

2 Associate Professor, Temperate Fruits Research Center, Horticultural Sciences Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.

3 Associate Professor, Horticultural Department, College of Agriculture, University of Guilan, Rasht, Iran.

چکیده [English]

Salinity tolerance threshold of fruit crops is obtained based on the reduction in yield under saline conditions compared to non-saline conditions. In order to determine salinity tolerance threshold and yield reduction per unit increase in soil salinity in selected almond genotypes, a factorial experiment was carried out. The study was based on completely randomized design (CRD), with two factors: (1) genotypes in 11 types (Tuono, Nonpareil, Mamaei, Shokoufeh, Sahand, Shahrood12, A200,1-25, 1-16 and 13-40 budded on GF677 rootstock, and GF677 rootstock (without budding as control),  and (2) salinity of irrigation water at five levels (0.5, 2.5, 4.9, 7.3 and 9.8 dSm-1). At the end of experiment, salinity tolerance threshold and yield reduction slope were calculated based on dry weight (biomass).The results showed that the type and combination of rootstock and scion affect the salinity tolerance threshold and yield reduction slope. The lowest salinity tolerance threshold was observed in 1-16 (2.22 dS/m), Mamaei (2.28 dS/m), and Sahand (2.39 dS/m) genotypes, respectively. On the contrary, the highest salinity tolerance threshold was observed in Shokoufeh (5.80 dS/m), Shahrood12 (4.84 ds/m) and 1-25 (4.80 ds/m).The highest yield reduction slope was observed in 13-40 (8.05%), A200 (7.86%), and Nonpareil (7.55%) genotypes, respectively. In contrast, the lowest yield reduction slope was observed in Shahrood 12 (5.60%). Overall, the results showed the level of salinity that reduced the yield by 50% in Shahrood 12, Shokoufeh, and 1-25, were 5.05, 4.43 and 3.55 dS/m greater than GF677 rootstock (without budding), respectively. EC50 in Shahrood 12, Shokoufeh, 1-25 and GF677 was observed in salinity intensity of 13.23, 12.59, 11.71 and 8.16 dS/m.  It should be noted that in previous studies, 100% decrease in yield was reported by salinity level of 7 dS/m, while in Shahrood 12 and Shokoufeh cultivars budded on GF677 rootstock, we observed only 12% and 9% yield reduction by salinity of 7 dS/m. Therefore, we suggest that Shahrood 12 and Shokoufeh cultivars budded on GF677 rootstock could be cultivated in areas with moderate salinity.

کلیدواژه‌ها [English]

  • Almond GF677 rootstock
  • Variety Shahrood 12
  • Saline water
  • Yield reduction slope
  1. اورعی، م.، ج. طباطبایی، ا. فلاحی، و ع. ایمانی. 1388. اثرات تنش شوری و پایه بر رشد، شدت فتوسنتز، غلظت عناصر غذایی و سدیم درخت بادام. علوم باغبانی ایران. 23 (2): 131-140.
  2. دژمپور، ج.، ن. علی اصغرزاده، و. گریگوریان، و ا. مجیدی هروان، 1391. ارزیابی تحمل به شوری چند دورگه بین گونه ای جنس Prunus. به نژادی نهال و بذر. 28 (2): 351-339.
  3. غلامی، م.، و م. راحمی. 1389. بررسی اثرات تنش شوری کلرید سدیم بر خصوصیات فیزیولوژیکی و مورفولوژیکی پایه رویشی هیبرید هلو- بادام ((GF677. مجله فناوری تولیدات گیاهی. 2 (1): 31-21.
  4. مومن پور، ع.، د. بخشی، ع. ایمانی، و ح. رضایی.  a1393. اثر تنش شوری بر غلظت عناصر غذایی در رقم های بادام ’شکوفه‘، ’سهند‘ و ژنوتیپ’۴۰-۱۳‘ پیوند شده روی پایه GF677. مجله علوم باغبانی مشهد، 29 (2): 255-268.
  5. مومن پور، ع.، د. بخشی، ع. ایمانی، و ح. رضایی. a1394. اثر تنش شوری بر خصوصیات رشدی و غلظت عناصر غذایی در رقم‌های بادام ’شاهرود 12‘، ’تونو‘ و ژنوتیپ’16-1‘ پیوند شده روی پایه GF677. مجله به­زراعی کشاورزی ابوریحان 17 (1): 216-197.
  6. مومن پور، ع.، د. بخشی، ع. ایمانی، و ح. رضایی.  b1394. اثر تنش شوری بر خصوصیات مورفولوژیک و فیزیولوژیک در برخی از ژنوتیپ‌های انتخابی بادام پیوند شده روی پایه. مجله فنآوری تولیدات گیاهی. 7 (2): 152-137.
  7. مومن پور، ع.، ع. ایمانی، د. بخشی، و ح. رضایی.  b1393. ارزیابی تحمل به شوری در برخی از ژنوتیپ های بادام پیوند شده روی پایه GF677 بر اساس صفات مورفولوژیک و فلورسانس کلروفیل. فرآیند و کارکرد گیاهی. 3 (10): 9-28.
  8. مومن پور، ع.، ع. ایمانی، د. بخشی، و ح. رضایی.  c1394. ارزیابی خصوصیات رشدی و غلظت عناصر غذایی در چهار ژنوتیپ بادام پیوندشده روی پایه GF677 تحت تنش شوری. علوم باغبانی ایران. 64 (3):603-624.
  9. ولی‌پور، م.، م. کریمیان اقبال، م. ج. ملکوتی، و ا. ح. خوشگفتارمنش. 1387. روند توسعه شوری و تخریب اراضی ‏کشاورزی در منطقه شمس‌آباد استان قم. علوم و فنون کشاورزی و منابع طبیعی، 12 (46): 691-683.‏El-Azab, E.M., A.M. El-Kobbia., and H.M. El-Khayat. 1998. Effects of three sodium salts on vegetative growth and mineral composition of stone fruit rootstock seedlings. Alexandria Journal of Agriculture Research. 43:219-229.
  10. Fowler, D. B., and J. W. Hamm. 1980. Crop response to saline sodic conditions in parkland area of Saskatchewan. Can. J. Soil Sci. 60:439-449.
  11. Grattan, S. R. 2002. Irrigation water salinity and crop production. University of California. Agriculture and Natural Recourses Publication. 8066
  12. Maas, E. V. 1990. Crop salt tolerance. pp. 262-303. In:K.K. Tanji (ed.) Agricultural Salinity Assessment and Management. ASCE. Publication. 619 pp.
  13. Maas, E. V. 1996. Plant response to soil salinity. 4th National Conference and Workshop on the “Production Use and Rehabilitation of Saline Lands". Albany Western Australia. 25-30 March.
  14. Maas, E.V, and G.J, Hoffman. 1977. Crop salt tolerance: current assessment. Journal of Irrigation and Drainage Engineering. 103: 115- 134.
  15. Maas, E.V. and S.R. Grattan. 1999. Crop yield as affected by salinity. Agric. Drain. Agron. Monograph. 38: 55-107.
  16. Montaium, R., H. Hening, and P.H. Brown, 1994. The relative tolerance of six Prunus rootstocks to boron and salinity. American Society for Horticultural Science. 6: 1169-1175.
  17. Munns, R., and M. Tester. 2008 Mechanisms of salinity tolerance.Annual Review of Plant Biology. 59: 651–681.
  18. Noitsakis, B., k. Dimassi, and I. Therios. 1997. Effect of NaCl induced salinity on growth, chemical composition and water relation of two almond (Prunus amygdalus L) cultivars and the hybrid GF677 (Prunus amygdalus- Prunus persica). Acta Horticulturae. 449: 641-648.
  19. Rahemi, M., Sh. Nagafian, and V. Tavallaie. 2008. Growth and chemical composition of hybrid GF677influenced by salinity levels of irrigation water. Plant Sciences. 7 (3): 309-313.
  20. Szczerba, M.W., D. T. Britto, and H. J. Kronzucker. 2009. K+ transport in plants: physiology and molecular biology. Plant Physiology. 166: 447-466.
  21. Van Genuchtan, M. Th. and G. J. Hoffman. 1984. Analysis of crop salt tolerance data. Soil Salinity under Irrigation- process and management. Ecological Studies 51, Springer-Verlag, N. Y. pp. 258-2.