نوع مقاله : مقاله پژوهشی

نویسنده

سازمان تحقیقاتٰ آموزش و ترویج کشاورزی، مرگر تحقیقات کشاورزی و منابع طبیعی همدان، بخش تحقیقات آبخیزداری

چکیده

ترکیب شیمیایی آب آبیاری نقش مهمی در میزان عملکرد گیاهان زراعی و حفظ یا تخریب ساختمان خاک ایفا می‌نماید و مورد توجه برنامه‌ریزان بخش کشاورزی می‌باشد. با عنایت به مزه ترش و سوزنده آب برخی از چاه­های کشاورزی در اطراف روستای همه‌کسی در استان همدان، تصور می­شود که ترکیب آب آن‌ها نامتعارف بوده و برای ساختمان‌خاک و رشد گیاهان زیان‌آور است. لذا پژوهش حاضر با هدف ارزیابی کیفیت آب چاه­های مذکور و شناسایی روند تغییر ترکیب آن­ها انجام گردید. در این پژوهش، تعداد شش حلقه چاه آب­گازدار شناسایی و مقدار شوری آب آن­ها، 15 مرتبه در طی سه سال (هر سال پنج بار) اندازه­گیری گردید و روند تغییر هدایت­الکتریکی آن­ها توسط نرم افزار SPSSمورد بررسی قرار گرفت. همچنین از هر چاه­ یک نمونه‌ آب برداشت شد و برای تعیین مقادیر هدایت الکتریکی، کاتیون­ها و آنیون­ها مورد تجزیه قرار گرفتوشاخص­های شیمیایی آن محاسبه و به کمک معیارها و دیاگرام‌ها، مورد ارزیابی قرار گرفت. نتایج نشان داد که کلسیم و بی‌کربنات،‌ بیشترین سهم یونی را در این آبها دارا بوده و آب چاه‌های مذکور جزو آب‌های نامتعارف و نوع بی­کربنات کلسیم- منیزیم محسوب می­شود. شوری آبِ این چاه‌ها زیاد (از 96/2 تا 07/6 دسی‌زیمنس بر متر) بوده و بعد از اصلاح نسبت جذب سدیم، در کلاس آب‌های خیلی‌شور و ‌سدیک (C4S4) قرار گرفت. با عنایت به شوری زیاد آب، بافت ریزدانه‌ی خاک و نبود آب کافی برای شستشو، انتظار می‌رود که سیستم خاک منطقه در اثر آبیاری با این آب در ناحیه ریشه‌ی‌گیاه به‌شدت شور شده و در نتیجه، عملکرد گیاهان و به‌خصوص گیاهان چند ساله کاهش ­یابد. ولی بررسی آماری تغیبرات هدایت ‌الکتریکی آب چاه­های­گازدار منطقه همه‌کسی نشان داد که مقدار شوری آب آن‌ها به‌طور معنی­داری با گذشت زمان کاهش یافته که در نتیجه، کیفیت آب چاه‌های‌گازدار منطقه‌ی همه‌کسی از نظر آبیاری با گذشت زمان بهبود حاصل می‌نماید.

کلیدواژه‌ها

عنوان مقاله [English]

Assessment of Water Quality of Gaseous Wells and Its Suitability for Agricultural Uses in the Hameh-Kasi Area, Hamedan Province

نویسنده [English]

  • Manuchehr Amiri

Soil Conservation and Watershed management Research Department, Hamedan Agricultural and Natural Resources Research and Education Center, Education and Extension Organization (AREEO), Hamedan, Iran.

چکیده [English]

Due to the important role of irrigation water chemical composition in the yield of crops and its effects on the soil structure, it has been taken into consideration by the agricultural sector planners. In this regard, the sour and burning taste of water in some agricultural wells around the HamehKasi village in Hamedan province has caused concerns about their water composition and possible detrimental effects on soil stucture and plant growth. Therefore, the present study was conducted to evaluate the water quality and the trend of changes in its composition. In this study, 6 gaseous water-wells were identified and their salinity was measured 15 times in three years (5 times each year), and the trend of their electrical conductivity changes was evaluated by SPSS software. Also, from each well, one sample was taken in order to determine the electrical conductivity, cations and anions content, and their chemical indices were calculated and evaluated by means of different criteria and diagrams. The results showed that calcium and bicarbonate ions have the highest concentrations in these waters, and the water of the mentioned wells was considered as unconventional and was Ca-Mg-HCO3 type. The water salinity of these wells was high (from 2.96 to 6.07 dS/m), and had very high salinity and sodicity (C4S4) after correction of the sodium adsorption ratio. Due to high salinity of water, fine-textured soil and lack of sufficient water for leaching, it is expected that the soil will be salinized in the root zone by irrigation, and as a result, the yield of plants and especially perennial plants would decrease. However, the statistical analysis of the electric conductivity changes of gaseous water-wells in HamehKasi area indicated that the salinity of their water decreased significantly over time. Consequently, the quality of water in the HamehKasi area in terms of irrigation improved over time.

کلیدواژه‌ها [English]

  • Groundwater
  • Non-conventional water
  • Irrigation
  • Gaseous water-well
  • Hamadan
  1. اصغری مقدم، م. و رجب‌پور، ح. (1381). بررسی تاثیر خواص هیدروشیمیایی آب زیرزمینی بر ساختمان چاه‌های کشاورزی دشت آذرشهر، بیست ویکمین گردهمایی علوم زمین، 28 الی30 بهمن ماه 1381، ‌سازمان زمین‌شناسی کشور، تهران، ایران، ص342-343.
  2. افشانی، ع.‌ر.، نوریان، م. و حسینی­رامشه، ز. 1384. فرازی بر SPSS14. تهران، نشر بیشه،330 صفحه.
  3. امیری، م. 1374. مطالعه پترو گرافی، پترولوژی و مواد معدنی منطقه آلموقلاق ( شمال اسد آباد همدان). پایان نامه کار شناسی ارشد پترولوژی. دانشگاه تربیت معلم تهران، 231 صفحه.
  4. امیری، م. 1383. نشانه‌های فعالیت هیدروترمالی و پنوماتولیتی وسیع در شمال استان همدان. بیست و سومین همایش علوم­زمین، 26 تا 28 بهمن ماه 1383، سازمان زمین شناسی کشور، تهران، ایران.
  5. امیری، م. 1384. ارتباط بین فروچاله های دشت فامنین- کبودرآهنگ-‌ قهاوند با سنگ کف منطقه. فصلنامه علوم زمین، جلد 15 شماره 58، ص134- 147.
  6. امیری، م.، اسدیان، ق. و امیری، ع.م. 1388. علل گازدار شدن چاه‌های آب کشاورزی در دشت های شمالی استان همدان و خوردگی تجهیزات آن‌ها. مجله پژوهش آب ایران. جلد 3 شماره 4، ص 51-62.
  7. امیری، م.، رحیمیان، م.ح. و موسوی، س.ا. 1396. بررسی تغییرات شوری و کیفیت آب چاه­های­کشاورزی گازدار در منطقه همه­کسی- فامنین، استان همدان. گزارش نهایی طرح تحقیقاتی، کد مصوب 93108-23-63-4، سازمان تحقیقات و آموزش و ترویج کشاورزی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی همدان.
  8. جلالی، م. 1380. مطالعه کیفیت آب چاه‌های شهرستان همدان. سازمان مدیریت و برنامه ریزی استان همدان. نشریه شماره 275، 114 صفحه.
  9. زرگر، م. 1384. راهنمای جامعSPSS13 همراه با تمرینهای علمی­و کاربردی، تهران، نشربهینه، 556 صفحه.
  10. ستوده، م.، یعقوبی، ب. و عبدالصالحی، س.ا. ۱۳۹۰. علل گازدار شدن و فوران چاه آب واقع در روستای عمان و ارائه راهکارها. پنجمین همایش تخصصی مهندسی محیط زیست، تهران، دانشگاه تهران، دانشکده محیط زیست، کد COI مقاله: CEE05_116 که با آدرس https://www.civilica.com/Paper-CEE05-CEE05_116.html در دسترس است.
  11. عسگری کیا، ر. 1378. بررسی علل خورنده بودن آبهای دشت قهاوند استان همدان. پایان‌نامه کارشناسی ارشد، گروه شیمی، دانشکده علوم، دانشگاه تربیت معلم تهران، 107 صفحه.
  12. غلامعلی­زاده آهنگر، ا. 1386. کیفیت و ارزیابی کیفی آب آبیاری. تهران، نشر علوم کشاورزی، 114 صفحه.
  13. Aghazadeh, N. and A.A. Mogaddam. 2010. Assessment of Groundwater quality and its Suitability for Drinking and Agricultural Uses in the Oshnavieh Area, Northwest of Iran. Journal of Environmental Protection, 1: 30 – 40
  14. AGRI-FACTS. 2018. Dissolved gases in well water, Agdex 716(D18), revised July 2006. Available onlineat:https://www1.agric.gov.ab.ca/$department/deptdocs.nsf/all/agdex637/$file/716d18.pdf? Accessed 27, June 2018.
  15. Ahmed, N., Ali, M.A., Rashid, M.K., Noreen, S. and B. Butt. 2015. Irrigation quality of underground water in District Multan. Pakistan Journal of Agriculture, Agricultural Engineering and Veterinary Sciences, 31: 211-220.
  16. Amiri, M., Ahmadi Khalaji, A., Tahmasbi, Z., Zarei Sahamieh R. and H. Zamanian. 2016. Geothermobarometry of amphiboles in intermediate to basic rocks from the Almogholagh pluton in western Iran. Journal of Mineralogical and Petrological Sciences. 111: 337-350.
  17. Amiri, M., Ahmadi Khalaji, A., Tahmasbi, Z., Zarei Sahamieh R. and H. Zamanian, 2017. Geochemistry, petrogenesis, and tectonic setting of the Almogholagh batholith in the Sanandaj Sirjan zone, western Iran. Journal of African Earth Sciences, 134: 113-133.
  18. APHA. 1995. Standard Methods for the Examination of Water and Wastewater, 19th Edition. A.D. Eaton, L.S. Clesceri and A.E. Greenberg, eds.American Public Health Association, Washington, DC.
  19. Ayers, R.S., Westcott D.W. and FAO (Food and Agriculture Organization of the United Nations). 1985. Water quality for agriculture. FAO Irrigation and Drainage Paper, 29 (Rev.1).
  20. Babiker I.S., Mohamed, M.A.A. and T. Hiyama. 2007. Assessing groundwater quality using GIS. Water Resources. Management, 21: 699–715.
  21. Bower, C.A. and M. Maasland. 1963. Sodium hazard of Punjab ground waters Symposium on water logging and salinity in West Pakistan, 49-61.
  22. Bower, C.A., Wilcox, L.V., Aikens, G.W., and M.G. Keyes. 1965. An index of the tendency of CaCO3 to precipitate from irrigation waters. Soil Science Society of America, Proceedings, 29:91-92.
  23. Chemiasoft, Online ebook. 2017. Guide To Preparation of Stock Standard Solutions. Available online at: http://www.chemiasoft.com/chemd/TDS, Accessed 19, December 2017.
  24. Collins, R. and A. Jenkins. 1996. The Impact of Agricultural Land Use on Stream Chemistry in the Middle Hills of the Himalayas, Nepal. Journal of Hydrology, 185: 71-86.
  25. Domenico P.A. and F.W. Schwartz. 1990. Physical and Chemical Hydrogeology. New York, John Wiley and sons. 410-420.
  26. Doneen, L.D. 1962. The influence of crop and soil on percolating waters. California, USA: Proceedings of the Biennial Conference on Ground Water Recharge (1961), 156-163.
  27. Doneen, L.D. 1964. Notes on Water Quality in Agriculture published as a Water Science and Engineering Paper 4001, Department of Water Science And Engineering, University of California, Davis, USA.
  28. Eaton, F. M. 1950. Significance of carbonates in irrigation waters. Soil Science, 39: 123–133.
  29. Edmunds W.M., Carillo-Rivera, J.J. and , A. Cardona 2002. Geochemical evolution of groundwater beneath Mexico City. Journal of Hydrology, 258: 1–24.
  30. Gupta, S. K. and Gupta, I. C. 1987. Management of Saline Soils and Water. Co. New Delhi, India Oxford and IBH Publication, 399 p.
  31. Hakim, M.A., Juraimi, A.S., Begum, M., Hasanuzzaman, M., Uddin, M.K., and , M.M. Islam. 2009. Suitability evaluation of groundwater for irrigation, drinking and industrial purposes. American Journal of Environmental Sciences, 5: 413–419.
  32. Hamilton, D. and H. Zhang. 1972. Solids Content of Wastewater and Manure,Oklahoma Cooperative Extension Service, BAE-1759.
  33. Hansson, B.R., Grattan, S.R. and A. Fulton. 1999. Agricultural salinity and drainage. University of California, Davis. Report revised 1999 Edition.
  34. Kelley, W.P. 1940. Permissible composition and concentration of irrigated waters. In: Proceedings of the ASCF, 66: 1- 607.
  35. Kumar M., Kumari, K., Ramanathan, A.L. and R. Saxena. 2007. A comparative evaluation of groundwater suitability for irrigation and drinking purposes in two intensively cultivated districts of Punjab, India, Environmental Geology, 53: 553–574.
  36. Lahermo, P. and B. Backman. 1999. Nitrates in groundwater in Finland: the most endangering quality problem. hydrogeology and Land Use Management, 329–333.
  37. Langelier, W.F. 1936. The analytical control of anticorrosion water treatment. Journal of the American Water Works Association, 28: 1500-1521.
  38. Lloyd, J.W. and J.A. Heathcote. 1985. Natural inorganic hydrochemistry in relation to ground water-an introduction. Clarendon Press, Oxford, 296 p.
  39. Nag, S.K. and P. Ghosh. 2013. Variation in Groundwater Levels and Water Quality in Chhatna Block, Bankura District, West Bengal –A GIS Approach. Journal of the Geological Society of India, 81: 261-280.
  40. Naseem, S., Hamza S. and E. Bashur. 2010. Groundwater Geochemistry of Winder Agricultural Farms, Balochistan Pakistan and Assessment for Irrigation Water Quality. European Water, 31: 21-32.
  41. Nishanthiny, S.C., Thusshanthy, M., Barathithasan, T. and S. Saravanan. 2010. Irrigation water quality based on hydrochemical analysis, Jaffna, SriLanka. American-Eurasian journal of agriculture and environmental sciences, 7: 100-102.
  42. Paliwal, K.V. 1972. Irrigation with saline water. New Delhi. IARI. Monogram N. 2, new series, 198 p.
  43. Raghunath, I. I. M. 1987. Groundwater. Second edition; Wiley Eastern Ltd., New Delhi, India, 344-369.
  44. Raju, N.J. 2006. Hydrogeochemical parameters for assessment of groundwater quality in the upper Gunjanaeru River basin, Cuddapah District, Andhra Pradesh, India. Environmental Geology, 6: 1067-1074.
  45. Raju, N.J., Ram, P. and S. Dey. 2009. Groundwater Quality in the Lower Varuna River Basin, Varanasi District, Uttar Pradesh, India. Journal of the Geological Society of India, 7: 178-192.
  46. Rahman W. A. and D.L. Rowell. 1979. The influence of magnesiumin in saline and sodic soils: A specific effect or a problem of cation exchange? European Journal of Soil Science, 30: 535-546.
  47. Rice, E.W., Baird, R.B., Eaton, A.D. and L.S. Clesceri )editors.( 2012. Standard Methods for the Examination of Water and Wastewater, Publisher: American Public Health Association (APHA), American Water Works Association (AWWA) and Water Environment Federation (WEF), 22nd Edition. 1496 p.
  48. Rhoades, J.D. 1972. Quality of water for irrigation, Soil Science, 113: 277-284.
  49. Richards, L. A. (United States Salinity Laboratory Staff). 1954. Diagnosis and improvement of saline and alkali soils. Agricultural Handbook No 60, United States Department of Agriculture, Washington DC, 160 p.
  50. Sastri, J.C.V. 1994. Groundwater Chemical quality in River Basins, Hydrogeochemical Facies and Hydrogeochemical Modeling, Lecture notes- Refresher Course conducted by School of Earth Sciences, Bharathidasan University, Tiruchirapalli, Tamil Nadu, India.
  51. Seibt, A., P. Hot., And D.Naumann. 2003. Gas solubility in formation waters of the North German Bassin Implication for Geothermal energy recovery. Proceeding, Word Geothermal Congress 2003 Kyusha. Tohoku japan. May 28- Jan 10, 2000.
  52. Siddiqui, A., Naseem, S. and T. Jalil. 2005. Groundwater Quality Assessment in and around Kalu Khuhar, Super Highway, Sindh, Pakistan. Journal of Applied Sciences, 5: 1260-1265.
  53. Stamatis, G. 2010. Ground water quality of the Ag. Paraskevi Tempi valley karstic springs application of a tracing test for research of the micro-bial pollution (KatoOlympos/NE Thessaly). Bulletin of the Geological Society of Greece, 43: 1868–1877.
  54. Subramani, T., Elangoand, L. and S.R. Damodarasamy. 2005. Groundwater quality and its suitability for drinking and agricultural use in Chithar River Basin, Tamil Nadu, India. Environmental Geology, 47: 1099–1110.
  55. Szabolcs, I. and C. Darab. 1964. The influence of irrigation water of high sodium carbonate content of soils. In Proceedings of 8th international congress of ISSS, Transaction II, 81–803.
  56. Todd, D.K. 1980. Groundwater Hydrology. 2 Edn, John Wiley and Sons, New York, ISBN-10:0471 08641X, 535 p.
  57. Tsunogai, U., Ishibashi, J., walita, H., Gamo, T., Masuzama, T., Nakatsuka, T., Nojiri, Y., and Nakamura, T. 1996. Fresh water seepage and pore water recycling on the seefloor.
  58. Vasanthavigar, M., Srinivasamoorthy, K., Vijayaragavan, K., Ganthi, R. R., Chidambaram, S., Anandhan, P., vannan, R., and S. Vasudevan. 2010. Application of Water Quality Index for Groundwater Quality Assessment: Thirumanimuttar Sub-Basin, Tamilnadu, India. Environmental Monitoring and Assessment, 171: 595-609
  59. WQPB, (Prepared by: Water Quality Planning Bureau and Water Quality Standards Section). 2011. A Review of Rationale for EC and SAR Standards. Helena, MT: Montana Department of Environmental Quality.
  60. Wilcox, L.V. 1948. Classification and Use of Irrigation Waters. U.S. Department of Agriculture, Washington DC, 962 p.
  61. Wilcox, L.V. 1955. Classification and use of irrigation water. U.S.Department of Agriculture, Circular No. 969, Washington D.C., U.S.A. 19 p.
  62. Wilcox, L.V. 1958. Inf. Bull 197, USDA, Washington, DC.
  63. WHO (World Health Organization). 2004. Guidelines for Drinking water quality, Geneva, 515 p.