نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکترای زراعت. باشگاه پژوهشگران جوان و نخبگان، واحد دزفول، دانشگاه آزاد اسلامی، دزفول، ایران.

2 نویسنده مسئول، استاد گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران.

3 استاد دانشگاه کشاورزی و منابع طبیعی رامین.

4 استادیار گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران

5 استادیار، عضو هیأت علمی بخش اصلاح و تهیه نهال و بذر، مرکز تحقیقات کشاورزی و منابع طبیعی استان خوزستان، سازمان تحقیقات، آموزش و ترویج کشاورزی، اهواز، ایران.

چکیده

به منظور بررسی اثر دور­های مختلف آبیاری بر عملکرد دانه و فتوسنتز جاری ژنوتیپ­های برنج، آزمایشی به صورت کرت‌های خرد شده، در قالب طرح بلوک‌های کامل تصادفی با سه تکرار به مدت دو سال (1393 و 1394) در استان خوزستان اجرا شد. تیمارهای آزمایشی شامل بود بر چهار دور آبیاری (یک، سه، پنج و هفت روزه) و 12 ژنوتیپ برنج که به ترتیب در کرت­های اصلی و فرعی قرار داشتند. نتایج تجزیه مرکب نشان داد که سطوح اصلی دور آبیاری، ژنوتیپ و اثر متقابل این دو، بر کلیه صفات مورد بررسی اثر معنی­داری در سطح یک درصد داشتند. میزان و سهم فتوسنتز جاری در دور آبیاری سه روزه دارای بیشترین میزان نسبی، نسبت به دیگر تیمارها به ترتیب با متوسط عملکرد 9/4586 کیلوگرم در هکتار و 3/89 درصد بود. همچنین با توجه به همبستگی مثبت و بسیار بالای عملکرد دانه با صفات میزان و سهم فتوسنتز جاری به ترتیب با ضرایب **9/0=r و **5/0=r می­توان نتیجه گرفت که دلیل اصلی افزایش عملکرد دانه ژنوتیپ­های برنج در دور آبیاری مزبور افزایش صفات مرتبط با فتوسنتز جاری و تخصیص بیشتر مواد حاصل از فتوسنتز به مخزن اصلی گیاه می­باشد به گونه­ای که ژنوتیپ IR 81025-B-327-3در دور آبیاری سه روزه که بیشترین میزان فتوسنتز جاری را داشت، با بالابودن نسبی سهم و راندمان فتوسنتز جاری از بیشترین عملکرد دانه با متوسط 1/6555 کیلوگرم در هکتار برخوردار بود. احتمالاً دلیل افزایش عملکرد ژنوتیپ­های برنج با تحمل بیشتر به خشکی، بویژه در دور آبیاری سه روزه، را می­توان به دلیل توانایی منبع برگ در افزایش صفات مورد بررسی و بالا بودن حجم مخزن در دریافت کامل مواد فتوسنتزی ناشی از فرایندهای مرتبط با این صفات دانست.
 

کلیدواژه‌ها

عنوان مقاله [English]

Evaluation of the Effect of Current Assimilation on Aerobic Rice Grain Yield under Different Irrigation Intervals in Northern Region of Khuzestan

نویسندگان [English]

  • kaveh limouchi 1
  • Mehrada Yarnia 2
  • Ataollah Siadat 3
  • Varharam rashidi 4
  • Abdolali Gilani 5

1 Ph.D Agronomy. Young Researchers and Elite Club, Dezful Branch, Islamic Azad University, Dezful, Iran.

چکیده [English]

This study aimed at establishing the effect of different irrigation intervals on current assimilation and yield of rice genotypes. This research was conducted in Khuzestan Province for two years (2014 and 2015) using four irrigation intervals (1, 3, 5, and 7 days) in the main plots and 12 rice genotypes in the sub-plots, with three replications. The combined analysis results showed that the main levels of irrigation interval, genotypes, and their interaction effect had a significant (P< .01) effect on all attributes. The amount and contribution of current assimilation of the three-day interval with an average yield of 4586.9 kg per hectare and 89.3 percent share had the highest relative value. Moreover, considering the highly positive correlation of grain yield with amount and contribution of current assimilation that were, respectively, (R=0.9**) and (R= 0.5**), we could conclude that the main reason for the increase in rice grain yield in this irrigation treatment was due to the increase in current assimilation – related attributes and allocation of more photosynthesis products to the main plant source. Consequently, IR 81025-B-327-3 genotype in the 3-day interval, which had the highest current assimilation, had relatively high share and efficiency of current assimilation and the highest grain yield with the average of 6555.1 kg per hectare. In general, the increased yield of rice genotypes with greater resistance to drought, especially regarding the three-day interval, can be attributed to the ability of leaf source to increase the considered attributes and the high volume of the tank in fully receiving the assimilated matter produced by processes connected to attributes associated with these properties.
 

کلیدواژه‌ها [English]

  • Source-sink relation
  • Stress
  • Khozestan
  1. ارادتمند اصلی، د. و ن، جاماسبی. 1392. بررسی اثر سایه­اندازی بر انتقال مجدد ماده خشک، عملکرد و اجزاء عملکرد ارقام مختلف برنج. گیاه و زیست بوم. 93-105.
  2. ساجدی، ن.ع.، ح، مدنی.، د، حبیبی.، و ع، پازکی. 1391. بررسی تأثیر سلنیوم و اسید سالیسیلیک بر انتقال مجدد، فتوسنتز جاری و عملکرد جاری و عملکرد دانه ارقام گندم در شرایط دیم. تولید گیاهان زراعی در شرایط تنش­های محیطی. 1(1): 1-14.
  3. طوسی، پ.، ا، اتابکی.، و ع، پیرزاده. 1394. اثر مصرف مقادیر مختلف نیتروژن بر فتوسنتز جاری و انتقال مجدد ماده خشک دو رقم کلزا. تولید و فرآوری محصولات زراعی و باغی. سال پنجم. 17(3): 97-108.
  4. لک، ش.، ا، نادری.، س، ع، سیادت.، ا، آینه­بند.، ق، نورمحمدی.، و س، ه، موسوی. 1386. تأثیر سطوح مختلف آبیاری، نیتروژن و تراکم بر عملکرد، اجزای عملکرد و انتقال مجدد مواد فتوسنتزی ذرت دانه­ای در شرایط آب و هوایی خوزستان. علوم و فنون کشاورزی و منابع طبیعی. سال پانزدهم. 42 (1): 1-14.
  5. مجدم، م.، ا.، نادری.، ق، نورمحمدی.، س، ع، سیادت.، و ا، آینه­بند. 1388. تأثیر تنش کمبود آب و مدیریت نیتروژن بر عملکرد دانه، میزان انتقال مجدد ماده خشک و فتوسنتز جاری ذرت دانه­ای در شرایط آب و هوایی خوزستان (رامین). فیزیولوژی گیاهان زراعی. 1(1): 1-10.
  6. منصوری­فر، س.، م، شعبان.، م، قبادی.، و س، ح، صباغ­پور. 1391. بررسی روند پر شدن دانه در ارقام نخود زراعی (Cicer arietinm L.) در شرایط تنش خشکی و مصرف کود نیتروژنه آغازگر. نشریه پژوهش­های زراعی ایران. 10(3): 591-602.
  7. مادح­خاکسار، ا.، ا، نادری.، ا، آینه­بند.، و ش، لک. 1393. برهمکنش کم آبیاری و قطع آب بر توزیع مجدد مواد ذخیره­ای، فتوسنتز جاری و رابطۀ آن با عملکرد ذرت دانه­ای. مجله فیزیولوژی گیاهان زراعی. سال ششم. 22(2): 53-68.
  8. Abdola, A. A., and M. J. Zarea. 2015. Effect of Mycorrhiza and Root Endophytic Fungi under Flooded and Semi-Flooded Conditions on Grain Yield and Yield Components of Rice. Crop Production. 8(1): 223-230.
  9. Alavi Fazel, M., and S. H. Lack. 2011. The Effects of Irrigation-Off at Different Growth Stages, Planting Patterns and Plant Population on Grain Yield and Dry Matter Remobilization of GrainCorn (Zea mays L.).World Applied Sciences Journal. 15(4): 463-473.
  10. Carmelita, M., R. Albertoa., R, Wassmanna, T, Hiranob, A, Miyatac., R, Hatanob., A. Kumara., A, Padrea., and M. Amante. 2011. Comparisons of energy balance and evapotranspiration between flooded and aerobic rice fields in the Philippines. Agricultural Water Management. (98): 1417–1430.
  11. Chogan, R. 2004. Corn breeding for drought tolerance and nitrogen from theory to practice (Translation). Publications of the Ministry of Agriculture. pp: 96.
  12. Dong, N. M., K. K. Brandt., J. Sørensen., N.N. Hung., C.V. Hach., P.S. Tan., and T. Dalsgaard. 2012. Effects of alternating wetting and drying versus continuous flooding on fertilizer nitrogen fate in rice fields in the Mekong Delta, Vietnam. Soil Biol. Biochem. 47: 166–174.
  13. Durand, M., B, Porcheron., N. Hennion., L. Maurousset., R. Lemoine., and N. pourtau. 2016. Water Deficit Enhances C Export to the Roots in Arabidopsis thaliana Plants with Contribution of Sucrose Transporters in Both Shoot and Roots. Plant Physiology. 170(1): 1460-1479.
  14. Eradatmand asli, D., and N. Jamasabi. 2012. Effect of shading on remobilization of dry matter, yield and yield components of different rice varieties. Plants and ecosystems. 9(34): 93-105.
  15. Ghasemi-Nasr, M., F. Karandish., A. D. Naft-Chali., and A. Mokhtasa-Bigdali. 2016. Effect of Two Periods of Mid-Season Drainage on Growth Parameters of Two Rice Varieties. Journal of Water Research in Agriculture. 29(4): 419-431.
  16. Ghosh, B., and N. Chakma. 2015. Impacts of rice intensification system on two C. D. blocks of Barddhaman district, West Bengal. Current Science. 109 (2): 342-346.
  17. Kage, H., M. Kochler and H. Stutzel. 2004. Root growth and dry matter partitioning of cauliflower under drought stress conditions: measurement and simulation. European Journal of Agronomy.20: 379–394.
  18. Kobata, T., S. Sugawara., and S. Takatu. 2000. Shading during the early grain filling period does not affect potential grain dry matter increase in rice. Agron, J. 92:411-417.
  19. Limouchi, K., S. A. Siadat., and A. Gilani. 2014. Effect of planting date on vejetatives growth and yield of three rice cultivares in north regions of Khuzestan. Agronomic Research in Semi Desert Regions. 11 (1): 51-63.
  20. Mohd-Zain, N.A., and M. Razi-Ismail. 2016. Effects of potassium rates and types on growth, leaf gas exchange andbiochemical changes in rice (Oryza sativa) planted under cyclic water stress. Agricultural Water Management. 164 (1): 83-90.
  21. Mosavy, S.A., M.R. Khaledian., A. Ashrafzadeh., and P. Shahinrokhsar. 2016. Effects of limited irrigation on yield and water productivity increasing of three soybean genotypes in Rasht region. Journal of water research agriculture. 29 (4): 433-446.
  22. Pandey, A., A, Kumar. D. S. Pandey., and P. D. Thongbam. 2014. Rice quality under water stress. Indian Journal of Advances in Plant Research. 1 (2): 23-26
  23. Park, G.H., J. H. Kim., and K. M. Kim. 2014. QTL analysis of yield components in rice using a cheongcheong/nagdong doubled haploid genetic map. American Journal of Plant Sciences. 5: 1174-1180.
  24. Pierre Saint, C., C. J. Peterson., A. S. Ross., J. B. Ohm., M. C. Verhoeven., M. Larson., and B. Hoefer. 2008. Winter wheat genotypes under different levels of nitrogen and water stress: Changes in grain protein composition. Journal of Cereal Sciences. 47 (3):407-416.
  25. Samonte-SO, P.B., L. T. Wilson., A. M. Mcclung., and L. Tarpley. 2001. Seasonal dynamics of nonstructural carbohydrate partitioning is in divers rice genotypes. Crop Sci. 41: 902-909.
  26. Sedaghat, N., H. Pirdashti., R. Asadi., and Y. Mousavi-Taghani. 2015. Effect of Different Irrigation Methods on Rice Water Productivity. Journal of Water Research in Agriculture. 28 (1): 1-9.
  27. Sinaki, J.M., E. Majidi Heravan., A. H. Shirani Rad., G. Noormohamadi., and G. Zarei. 2007. The effects of water deficit during growth stages of canola (Brassica napus L.). Journal of Agricultural Sciences. 2: 417-422.
  28. Shanmugasundaram, B. 2015. Adoption of system of rice intensification under farmer participatory action research programme (FPARP). Indian Res. J. Ext. Edu. 15(1): 114-117.
  29. Srayloo, M., H. Sabouri., and A. R. Dadras. 2015. Assessing genetic diversity of rice genotypes using microsatellite markers and their relationship with morphological characteristics of seedling stage under non- and drought-stress conditions. Cereal Research Communications. 5(1): 1-15.
  30. Tan, X., D. Shao., H. Liu., F. Yang., C. Xiao., and H. Yang. 2013. Effects of alternate wetting and drying irrigation on percolation and nitrogen leaching in paddy fields. Paddy Water Environ. 11: 1–15.
  31. Tarlera, S., M.C. Capurro., P. Irisarri., A. F. Scavino., G. Cantou., and C. Roel. 2015. Yield-scaled global warming potential of two irrigation management systems in a highly productive rice system. Scientia Agricola. 73 (1): 43-50.
  32. Tavala, R., A. Aalami., H. Sabouri., and A. sabouri. 2015. Evaluation of haplotype and allelic diversity of SSR markers linked to major effect QTL on chromosome 9 controlling drought tolerance in rice. Cereal Research.5 (1): 107-119.
  33. Tuong, T.P., B. A. M. Bouman., and M. Mortimer. 2005. More rice, less waterintegrated approaches for increasing water productivity in irrigated rice-based systems in Asia. Plant Prod. Sci. 8: 231– 41.
  34. Tuyen, D.D., and D. T. Prasad. 2008. Evaluating difference of yield trait among rice genotypes (Oryza sativa L.) under low moisture condition using candidate gene markers. Omonrice. 16: 24-33.
  35. Uphoff, N., A. Kassam., and A. Thakur. 2013. Challenges of increasing water saving and water productivity in the rice sector: introduction to the system of rice intensification (SRI) and this issue. Taiwan J. Water Conserv. 61: 1–13.
  36. Wade, L.J., C. G. Mclaren., L. Quintana., S. Rajatasereekul., A. K. Sarawgi., A. Kumar., H. U. Ahmed., A. K. Singh., R. Rodriguez., J. Siopongco., and S. Sarkarung. 1999. Genotype by environment interactions across divers rainfed lowland rice environments. Field Crops Research.64: 35-50.
  37. Walton, G., N. Mendham., M. Robertson., and T. Potter. 1999. Phenology, physiology and agronomy of canola in Australia, In: Proceeding of 10th International Rapeseed Congress, Canberra, Australia. pp. 9-14.
  38. Wang, Z., J. Yang., Q. Zhu., Z. Zhang.,  Y. lang., and X. wang. 2001. Reasons for poor grain plum pnress in intersubspecifichy hybrid rice. (In Chinese, with English abstract) Acta Agron. Sin. 24(6): 782-787.
  39. Watanabe, Y., Y. Nakamura., and R. Ishii. 1997. Relationshi between starch accumulation and activities of the related enzymes in the leaf sheath as temporary sink organ in rice (Oryza Sativa L.). Australian Journal of plant physiology. 24: 563-569.
  40. Yang,J., Z. Jianha., W. Zhiqing., Z. Qingsen., and W. Wei. 2001. Remobilization of carbon reserves in response to water deficit during grain filling of rice. Field CropsRes. 71: 47–55.