تاثیر تنش آبی بر عملکرد و دمای برگ گیاه مرزه و تعیین شاخص CWSI

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار گروه مهندسی آب دانشکده کشاورزی دانشگاه لرستان و دانش آموخته دانشگاه شهید چمران اهواز.

2 دانشجوی دکتری اکواوژی گیاهان زراعی، گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه لرستان، لرستان، ایران.

3 دانشجوی دکتری، گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه لرستان، لرستان، ایران.

4 استادیار، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه لرستان. لرستان، ایران.

چکیده

با توجه به ارزش فراوان آب، برنامه‌ریزی آبیاری و کشت گیاهان دارویی، این تحقیق در دانشکده کشاورزی، دانشگاه لرستان، با هدف برنامه‌ریزی آبیاری گیاه دارویی مرزه (Satureja hortensisبا استفاده از شاخص(CWSI) تحت تنش­های مختلف آبی و بدون تنش (در شرایط گلدانی) انجام گرفت. در این تحقیق، گیاه دارویی مرزه در یک سری گلدان، تحت چهار تیمار آبیاری (IR100، IR80، IR60و IR40)به ترتیب معادل با 100%، 80%، 60% و 40 درصد آب سهل الوصول (RAW=0.5 AWC) در سه تکرار، کشت شد. آبیاری تیمار شاهد (IR100) به طور مرتب به هنگام تخلیه RAWخاک صورت گرفت و سه تیمار دیگر نیز همزمان منتها به مقادیر ذکر شده آبیاری شدند. برای اندازه گیری شاخص CWSI، دمای پوشش سبز، دمای هوا (خشک و تر) در روزهای بعد(ساعت 8 تا 14) و قبل(ساعت12 تا 15 ) از هر آبیاریدر طول دوره رشد اندازه­گیری گردید. مطابق نتایج، معادله خط مبنای بالا (بدون تعرق) به صورت  (𝑇𝑐𝑇𝑎) UL= 0.69و خط مبنای پایین (با تعرق بالقوه) به صورت (𝑇𝑐𝑇𝑎)L.L= 0.2787 – 0.1134(VPD)حاصل گردید. نتایج نشان داد اثر تنش آبی بر روی عملکرد معنی دار گردید، به گونه ای که بیشترین عملکرد در تیمار IR100 (756/1 گرم در هر بوته) و کمترین عملکرد در تیمارIR40  (421/1 گرم در هر بوته) مشاهده گردید. میانگین CWSI در روز قبل از آبیاری، در چهار تیمار ذکر شده بالا، به ترتیب برابر 19/0، 21/0، 28/0 و 46/0 به دست آمد. براساس این اطلاعات حد مجاز شاخص CWSI برای برنامه‌ریزی آبیاری گونه مرزه در گلدان، برابر 19/0 حاصل گردید. نتایج مقایسه میانگین نشان داد که تفاوت CWSI و دمای پوشش سبز بین تیمار شاهد (IR100) و IR80معنی­دار نشد ولی تفاوت  CWSI و دمای پوشش سبز بین تیمارهای IR60و  IR40 با تیمار شاهدمعنی­دار گردید. افزایش شاخص تنش سه تیمار IR80، IR60وIR40نسبت به تیمار شاهدبرابر 10% ، 47% و 142درصد به دست آمد. در این تحقیق همبستگی قوی (r = -0.978*) بین شاخص تنش آبی و هدایت روزنه­ای به دست آمد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Water Stress on Yield and Canopy Cover Temperature and Determination of CWSI for Summer Savory (Satureja hortensis)

نویسندگان [English]

  • Mehri Saeedinia 1
  • Seyed Hamzeh Hosseinian 2
  • Farhad Beiranvand 3
  • Ali Heydar Nasrollahi 4
1 Assistant Professor, Department of Water Engineering, Faculty of Agriculture, Lorestan University, Lorestan, Iran.
2 Ph.D. Student of Crop Ecology, Department of Agronomy and Plant Breeding, Faculty of Agriculture, Lorestan University, Lorestan, Iran.
3 Department of Horticultural Sciences, Faculty of Agriculture, Lorestan University, Lorestan, Iran.
4 Assistant Professor, Department of Water Engineering, Faculty of Agriculture, Lorestan University, Lorestan,
چکیده [English]

Considering the great value of water, irrigation scheduling, and cultivation of medicinal plants, this research was conducted at the Faculty of Agriculture, Lorestan University, with the aim of scheduling irrigation of summer savory using CWSI and applying different levels of water stress under the condition of pot planting. In this research, seeds of summer savory were cultivated  with three replications under four irrigation treatments of 100%, 80%, 60%, and 40% of readily available water (RAW) (IR100, IR80, IR60 and IR40). Irrigation of the control treatment (IR100) was carried out when all the soil RAW was depleted. Irrigation of the other three treatments was carried out at the same time but with, respectively, 80%, 60%, and 40 percent of the volume applied to IR100.  The canopy cover temperature in IR100 and air temperature (dry and wet) were measured on the day after (8-14 o’clock) and before irrigation (12-15 o’clock) in order to construct the lower and upper limits base lines required to calculate CWSI. According to the result, the upper base line equation is (𝑇𝑐-𝑇𝑎) UL = 0.69, and the lower base line is (𝑇𝑐-𝑇𝑎) LL = 0.2787 - 0.1134 (VPD). Result showed that the effect of water stress on yield was significant. The highest yield was observed in IR100 (1.756 g / plant) and the lowest yield was observed in IR40 (1.421 g / plant).
The crop water stress index (CWSI) of the four treatments in the day before irrigation was 0.19, 0.21, 0.28, and 0.46, respectively. According to this information, the permissible CWSI index for irrigation scheduling of summer savory growing in pots was 0.19. The result of means comparison indicated that differences between IR100 and IR80 in values of CWSI and canopy cover temperature were not significant, but they were significant between IR100, IR60 and IR40.  The increment of CWSI in IR80, IR60 and IR40 were 10%, 47%, and 142 percent relative to the IR100. In this research, a strong correlation (r= -0.978*) was obtained between CWSI and stomatal conductance.

کلیدواژه‌ها [English]

  • Crop Water Stress Index
  • Irrigation scheduling
  • medicinal plant
  • Stomatal conductance
  1. احمدی، ح. نصراللهی، ع. ح. شریفی‌پور، م؛ و عیسوند، ح. ر. 1396. برنامه‌ریزی آبیاری سویا با استفاده از اختلاف دمای هوا و پوشش گیاهی. مدیریت آب و آبیاری. دوره 7، شماره 1،  121-133.
  2. برومندنسب، س. طاهری‌قناد، س. و معیری، م. 1383. استفاده از درجه حرارت پوشش سبز گیاه برای برنامه‌ریزی آبیاری ذرت بهاره در شرایط خوزستان. مجله علمی کشاورزی،  جلد 27، 47-56.
  3. درگاهی، ی. اصغری، ع. شکرپور، م. رسول‌زاده، ع. 1391. اثر تنش کم آبی بر خصوصیات مورفولوژیک ریشه در ارقام کنجد. مجله الکترونیک تولید گیاهان زراعی. دوره 5، شماره 4، 151-172.
  4. سعیدی‌نیا، م. برومندنسب، س. هوشمند، ع. سلطانی‌محمدی، ا. و اندرزیان، ب. 1395. قابلیت کاربرد شاخص cwsi برای برنامه‌ریزی ذرت با آب شور در اهواز. دانش آب و خاک. دوره 26، شماره 1، 173-185.
  5. سیفی، ا. میرلطیفی، س. م. دهقانی‌سانیج، ح. و ترابی، م. 1393 تعیین شاخص تنش آب برای درختان پسته تحت روش آبیاری قطره‌ای زیرسطحی با استفاده از اختلاف دمای تاج گیاه و هوا. مدیریت آب و آبیاری. دوره 4، شماره 1، 123-136.
  6. علیزاده، ه. 1388. رابطه آب خاک و گیاه. چاپ نهم. انتشارات آستان قدس رضوی. صفحه 484.
  7. محمدپور، م. عباس‌زاده، ب.آزادبخت، م. و مینویی‌مقدم، ج. 1396. بررسی ترکیبات عمده اسانس گیاه دارویی مرزه (Satureja hortensis L.) تحت تأثیر تاریخ کاشت و تراکم در استان مازندران. مجله داروهای گیاهی.دوره 8 (ویژه‌نامه فارسی)، 141-148.
  8. محمدی، ه. برومندنسب، س. نصراللهی، ع. ح. و ایزدپناه، ز. 1395. بررسی تأثیر رژیم‌های مختلف آبیاری قطره‌ای ذرت روی شاخص تنش آبی گیاه (CWSI). مجموعه مقالات دومین کنگره ملی آبیاری و زهکشی ایران، دانشگاه صنعتی اصفهان.
  9. Candogan, B.K., Shncik, M., Buyukcangaz, H., and Demirats, C. 2013. Yield, quality and crop water stress index relationships for deficit irrigated soybean [Glycine max (L.) Merr. In sub-humid climatic conditions. Agricultural water Management. 118: 113-121.
  10. Colak, Y.B; Yazar, A; Colak, I; Akca,H. and Duraktenkin, G. 2015. Evaluation of Crop Water Stress Index (CWSI) for Eggplant under Varying Irrigation Regimes Using Surface and Subsurface Drip Systems. Agriculture and Agricultural Science Procedia. 4: 372 – 382.
  11. Gontia, N.K., and Tiwari, K.N. 2008. Development of crop water stress index of wheat crop for scheduling irrigation using infrared thermometry. Agricultural water management. 95(10): 1144-1152.
  12. Howell, T. A., and Dusek, D. A. 1995. Comparison of vapor-pressure-deficit calculation methods—southern high plains. Irrigation and drainage engineering. 121(2): 191-198.
  13. Idso, S.B., Reginato, R.J., Reicosky, D.C. and Hatfield, J., 1981. Determining soil-induced plant water potential depressions in alfalfa by means of infrared thermometry 1. Agronomy Journal. 73(5):826-830.
  14. Jackson, R.D., Idso, S.B., Reginato, R.J., and Pinter, P.J. 1981. Canopy temperature as a crop water stress indicator. Water Resources Research. 17(4): 1133-1138.
  15. Kar, G., and Kumar, A. 2007. Surface energy fluxes and crop water stress index in groundnut under irrigated ecosystem. Agricultural and Forest Meteorology 146: 94–106.
  16. Khorsandi, A., Hemmat, A., Mireei, S.A., Amirfattahi, R., and Ehsanzadeh, P., 2018. Plant temperature-based indices using infrared thermography for detecting water status in sesame under greenhouse conditions. Agricultural Water Management. 204: 222-233.
  17. Kulkarni, M., and Swati, P. 2009. Evaluating variability of root size system and its constitutive traits in hot pepper (Capsicum annum L.) under water stress. Scientia Horticulturae, 120(2), 159-166.
  18. Lebourgeois, V., Chopart, J.L., Begue, A., and Mezo L.L.2010. Towards using a thermal infrared index combined with water balance modeling to monitor sugarcane irrigation in a tropical environment. Agricultural Water Management. 97(1): 75-82.17.
  19. Li, L., Nielsen, D.C., Yu, Q., Ma. L., and Ahuja, L.R. 2010.  Evaluating the crop water stress index and its correlation with latent heat and CO2 fluxes over winter wheat and maize in the North China plain. Agricultural Water Management. 97: 1146–1155.
  20. Liu, H.S., Li, F.M. and Xu, H. 2004. Deficiency of water can enhance root respiration rate of drought-sensitive but not drought-tolerance spring wheat. Agricultural Water Management. 64: 41-48.
  21. Merrill, S.D., Tanaka, D.L. and Hanson, J.D. 2002. Root length growth of eight crop species in Haplustoll soils. Soil Science Society of America Journal. 66: 913-923.
  22. Metin Sezen, S., Yazar, A., Dasgan, Y., Yucel, S., Akyıldız, A., Tekin, S., and Akhoundnejad, Y.2014. Evaluation of crop water stress index (CWSI) for red pepper with dripand furrow irrigation under varying irrigation regimes. Agricultural Water Management. 143: 59–70.
  23. O’Shaughnessy, S.A., Evett, S.R., Colaizzi, P.D., and Howell, T.A. 2012. A crop water stress index and time threshold for automatic irrigation scheduling of grain sorghum. Agricultural Water Management. 107: 122– 132.
  24. Pinter, P.J., Zipoli, G., Reginato, R.J., Jackson, R.D., Idso S.B., and Hohman, J.P. 1990. Canopy temperature as an indicator of differential water use and yield performance among wheat cultivars. Agricultural Water Management. 18: 35-48.
  25. Riberio, R.V., Machado, E.C. and Santos, G. D. 2005. Leaf temperature in sweet orange plants under field condition: influence of meteorological elements. Revista Brasileira de Agrometeorologia. 13(2): 353-368.
  26. Satil, F., and Kaya, A. 2007. Leaf anatomy and hairs of Turkish Satureja L. (Lamiaceae). Acta Biologica Cracoviensia Series Botanica. 49(1): 67-76.
  27. Sepaskhah, A.R., and Kashefipour, S.M. 1994. Relationship between leaf water potential, CWSI. Yield and fruit quality    of sweet Lime under drip irrigation. Agricultural Water Management. 25(1): 13-21.25.
  28. Skocibusic M., Bezic, N., Dunkic, V. 2006. Phytochemical composition and antimicrobial activities of the essential oils from Satureja subspicata Vis. Growing in Croatia. Food Chemistry. 96: 20-28.
  29. Wang D and Gartung J, 2010. Infrared canopy temperature of early-ripening peach trees under postharvest deficit irrigation. Agricultural Water Management 97: 1787–1794.